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Hierarchy of Soliton Solutions to the Gauged Nonlinear Schrodinger Equation on the Plane
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We find static, self-dual solutions to the SU(N) gauged, nonlinear Schrodinger equation in two spatial
dimensions with scalar matter in the adjoint representation. The gauge field is determined dynamically

by the Chem-Simons interaction with nonrelativistic scalar matter. The hierarchy is associated with the
Toda hierarchy, which can be solved explicitly. The N=2 case reduces to the Liouville equation found

by Jackiw and Pi when looking at the nonlinear Schrodinger equation gauged by U(l).

PACS numbers: 03.65.Ge, 11.10.Lm, 11.15.—q

We will study in this paper the gauged, nonlinear
Schrodinger equation in two space, x=(x~,x&), and one
time, t, dimension for a complex scalar field, 4(x, t), in

the adjoint representation of the gauge group SU(N)
with vector potential (Ao, A) =(Ap, A ~, Ap) (x,t):

i — @=—D 4+e[Ao, @]+gf[@,4],@l,
rlt

D;4=8;@+e[A;,@] .

The system is gauge invariant under the gauge transfor-
mation by g 6 SU(N),

Ap~ g Apg+g Bpg, 4~ g 4g .

We have been motivated to study this system by the re-
cent study of Jackiw and Pi' of a similar system with

gauge group U(1) and the charge [C&*,@l replaced by
e*e.

In recent years, enormous progress has been made in

understanding integrable quantum field theories in two
dimensions, first in the classical realm, and then in the
quantum. These models can often be understood in

terms of hierarchies, such as the Korteweg-de Vries
hierarchy or the Toda hierarchy. The nonlinear
Schrodinger equation in 1+1 dimensions for a complex
singlet field has been solved both classically and quan-
tum mechanically. It too is the beginning of such a
hierarchy.

We consider the gauged nonlinear Schrodinger equa-
tion as building upon this work, following the dawning of

t

a new age of three-dimensional models. On the one

hand, there is three-dimensional gravity and more gen-
erally the Chem-Simons theory, ' which seem to be ex-
actly integrable as quantum theories. On the other
hand, there are only a few integrable classical theories in

three dimensions: the Kadometsev-Petviashvili equa-
tion, the Davey-Stewartson equation, ' and now the
gauged nonlinear Schrodinger equation first considered
by Jackiw and Pi' is a new candidate.

In this work we will show that the gauged nonlinear
Schrodinger equation, with a dynamically determined

gauge field, is part of a hierarchy of equations for gauge
groups SU(N), of which Jackiw and Pi considered the
U(1) subgroup. The gauge field is dynamically deter-
mined by a convariantly conserved current J". If

J"= (p, J) = ([@*,Ci], —i(@*D@—D4*@))

so that D„J"=0, then the gauge field is dynamically
determined by the equation

(k/2tr )e"'PF,
ti
=eI",

where F,p
= [D„Dp] and k is an integer. Equation (2)

arises from a Chem-Simons interaction in the Lagrang-
ian. We will find explicit static solutions of Eqs. (1) and

(2), relying upon the SU(N) Toda hierarchy. The N=2
case is the Liouville equation; hence this reduces to the
system considered by Jackiw and Pi. Each member of
the hierarchy can be considered as the k ~ limit of a
topologically massive Yang-Mills theory in 2+1 dimen-
sions, since the Chem-Simons term gives rise to a topo-
logical mass for the gauge field. Equations (1) and (2)
can be derived from the Lagrangian

L = e'~"Tr(A, &ttA, + —, A, ApA) +iTr@*rl,@+eTr(&*[An, @])—Tr(D, N) +(g/2)Tr[@*,@] (3)

We also consider the W =~ limit of the hierarchy. The Toda equations have nonlinear symmetries called 8'/v alge-
bra for the SU(N) Toda theory 'The ge. nerators of these symmetries appear in the explicit soliton solutions. The
N =~ limit'' is especially interesting because the W algebra is linear. The SU(~) Toda equation can be derived
from a three-dimensional theory of gravity called the Einstein-Weyl theory. ' This theory has a propagating graviton,
unlike the usual theory of gravity in three dimensions, which is purely topological.

To first consider the solutions, we follow Jackiw and Pi in considering the Hamiltonian point of view, with Hamil-
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tonian H= fdx&',

& =Tr(D@) —(g/2)Tr[4&*, @] (4)

plus the constraint (2). Then (1) is a consequence of the
Schrodinger equation

. 84 6H
l

Bt pep*
(5)

Finding the static solutions is equivalent to minimizing
the energy functional

H= dxTr[(D +'iD )4]' (7)

provided that fdx TrD x J =0 and the couplings are fixed

by g= a4xe /k. The crucial observation of this paper
is that the energy-minimizing equation

The static solutions can be found by using the identity
noted by Jackiw and Pi:

Tr(D@) =Tr[(Di + iD2)4] ~ Trtl xJ ~ e(Tr@*B@).

(6)

(8b) for c'=exp&' so that

6 a.-y = — 'QK.pe",
P

(12)

which is the Toda molecule equation. ' ' For SU(2),
one obtains the Liouville equation, as in Ref. 1. This is
expected, since we have made an Abelian ansatz for the
SU(2) gauge fields.

For SU(3), we obtain coupled equations

tl 8=&' =(—2xe/k)(2e' —e~ ),
tl-ti=y'=( —2ne/k)(2e' —e' ) .

(13a)

(13b)

1 (,i —l)yy] . (I —]) (14)

y=ip(z) = g y.(z)g',
a I

(1ea)

Let —2ze/k = 1 henceforth.
The Toda equations have been solved explicitly and

elegantly by Leznov and Saveliev. ' For SU(N), 'o one
can solve for the p "s in terms of 2(N —1) holomorphic
functions f; ,i =1,—. . . , N —1,

(D 1
+ iD2)@=0,

along with the constraint

(8a)

a I

(15b)

8 =F i 2
= —(2x'e/k ) [4*,4], (8b)

W) 2=9] 2, 8'3+i' 4=4, 8'3 —i8'4=%*,

where all fields W„satisfy t)3W„=O=t14W„. If we call
z =x]+ix2, z =x] —ix2, then we can obtain solutions to
(8a) and (8b) with the ansatz

W =pa H. , W-=gb'H. ,

can be obtained as a dimensional reduction of the four-
dimensional self-dual equation

G„,, = —, e„,.pG'P =a„W,—a,,W„+ [W„,W,],
with

[g'g'] =0=
eg" ag",

denotes differentiation. The y, (z)'s denote a column
vector

N —
1

f,'(.) '"M (.)I~, )
jaw]

and g, (z) denotes the vector

N —
I

(), IM (-) ' gf, (-) "

(16a)

(16b)

where G;~ is the inverse Cartan matrix and M —satisfy
the differential equations

4 =pc'E„ci*=g c'E —,

for a Lie algebra with generators H, E,E so that

[H„Hp] =0, [H„E~ p] = ~ K,pE w p,

(10) 'V —]

|I-M+ =M+ g f,+(z)E
j~]
i'V —

l

a-M =M g f, (Z)E+, ,
1

(17a)

(17b)

[E„Epl =8, pHp, —

where K,p is the Cartan matrix K,p=aP/a for simple
roots a,P. We note that this is because 8 can be diago-
nalized by a gauge transformation. We can find solu-
tions when A- and A= lie in the Cartan subalgebra gen-
erated by the H 's. @,@* take the form shown. Howev-

er, we can solve this explicitly only for c'=c'. Other-
wise there is an unknown function in the problem. With
the above ansatz, we can solve D=@=0 and D N* =0 for
a', b in terms of c . Then we can solve the constraint

1

e
If i(z) I

'"If2(z)
I

[I+ I ff i(z) I'+ Iff2(z) f'fr(z')
I
'] (18a)

e ' =e 8-8=/ (18b)

If we choose fi(z) =1, f2(z) =z", we have for the

and k, are the N —I fundamental weight vectors g;a /
ai =Bi.

For SU(2) this reduces to the solution used by Jackiw
and Pi if we set f+ f, while for SU(3) we have
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charge distribution

fe*,el =e" 0,+e"0, ,

where

2(n+ 2)
2~'

&
2n/3 I +&2+

(n+1)(n+2)

2

e =g(tr, (z)2'„(z), e =1,
with

(-a'+T )~(z) =0=(-a-'+T==)g(z),

(19)

~here T-, T== are components of the energy-momentum
tensor. For general N,

[-a +U(»a -'+ +U(~) l y, (z) =0 (2O)

Equation (18) for e ' is very illuminating. For the
case of the Liouville equation, it is essentially the
Backland transformation which generates solutions in

terms of free fields. For %=2,

statistics. The scalar fields C)=pe' E, act as vertex
operators. It is interesting to investigate this further in

relation to the quantum Hall effect as well as vortex
scattering. Last, ' this investigation may shed light on
the relation of the Donaldson invariants for four-
dimensional topological Yang-Mills theory (i.e., integrals
of differential forms on the moduli space of instantons)
and the Vaughn-Jones invariants as computed by the
holonomy around a knot of the flat connection in the
Chem-Simons gauge theory.
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with a corresponding equation for g. One can construct
from the U(t)'s conformal fields of conformal spin k,
starting with the energy-momentum tensor U~2~.

'

These fields generate the classical W algebras that are
nonlinear symmetries of the Toda equations. The fields
can be expressed in terms of kth-order diff'erentials on
the (A, d), (1i*) fields as seen in the formula

r

d —
I

U(d)(z) =e" ()d —g U(;)(z)t) ' e
t 2

(21)

It has been noted that since the Cartan matrix has the
form K —,~ =28 ~

—6, p —
~

—8, p+ ~, one can formally
take the N ~ limit so that Il:,ppt)~ d p(t) ' /dt for
a continuum variable t. This limit of the Toda equations
can be obtained from Einstein-Weyl gravity. ' While
the pure Chem-Simons theory is topological, when it is

coupled to a scalar field in curved space it ceases to be
so. A similar statement can be made about the relation
between Einstein-Hilbert gravity and Einstein-Weyl
gravity with the conformal factor replacing the scalar
field.

Finally, we list some additional points worthy of fur-
ther investigation. First, one might consider complexify-
ing time to make the theory four dimensional. One
could pursue in this direction a possible relation to four-
dimensional self-dual gravity. " (Einstein-Weyl gravity
can in fact be derived from self-dual gravity by a quo-
tient by its Kilhng vector. ) Second, the vortices obtained
in this theory are non-Abelian vortices, which after
quantization should have non-Abelian fractional statis-
tics. One can quantize the Toda molecule equation'
and obtain an R matrix, which in fact describes such
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