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The (2+1)-dimensional Davey-Stewartson I system is quantized, and the exact eigenvalues and eigen-
functions of the Hamiltonian are obtained. Thermodynamic quantities are also given. Although it is
quantized by using the commutation relations for bosons, the energy spectrum and thus the thermo-
dynarnic quantities reveal the characteristics of a system with two species of independent fermions.
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The integrable systems in a space of one spatial and
one temporal dimension [(1+1)D] and the solvable pla-
nar statistical model (there is an intimate relationship
between them) have aroused great interest in recent
years. The exact solutions of the models are very helpful
in understanding many interesting physical problems,
e.g. , the properties of magnetic alloys at low tempera-
tures (the Kondo problem), ' the critical behavior of two-
dimensional systems, etc. The study of the Yang-
Baxter equation in the (1+1)D integrable systems and
the two-dimensional solvable models of statistical me-

chanics stimulated the development of many branches
of mathematics, the most important examples being the
theories of the quantum group and braid group.

The next logical step in the research of integrable sys-
tems, of course, is to study the (2+1)D problems. Some
classical nonlinear evolution equations in (2+1)D space
were solved exactly in the last decade. However, none
of the quantum analogs was solved.

The Davey-Stewartson I (DSI) systetn is one of the
simplest of the known (2+1)D integrable systems. It
can be considered as the nonlocal generalization of the
(1+1)D nonlinear Schrodinger model or the 8-function
gas model. The initial-boundary-value problem for the
classical DSI equation can be solved exactly by using the
inverse-scattering transform. EA'orts were made to
study the quantized (2+1)D DSI system; however, the
energy spectrum and thermodynamics of it were still un-

known, and the problem of the solution of the quantized
DSI system remained open.

In this Letter we will solve the quantized DSI system
to obtain the eigenvalues and eigenfunctions of the Harn-
iltonian, and the thermodynamic quantities. We will

show that although it is quantized by the commutation
relations for bosons, the energy spectrum and thus the

thermodynamics reveal the characteristics of a system of
two species of independent fermions, and they do not de-
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We quantize the system with the following commuta-
tion relations:

[q(g, g, t),q*(g', q', t)l =2b(g —g')a(g —g'),

[q(&, rl, t ),q(&', rt', t )] =0 (5)

pend on the strength of the coupling between particles.
For (1+1)D integrable systems, e.g. , the nonlinear
Schrodinger model, the bound states are caused by the
attractive forces between particles, but for the DSI sys-
tem, the bound states are given by suitable applied
forces.

The DSI equation is

i 8,q = —
—, (8„+28„,)q+iA (q iA2q—,

where

1990 The American Physical Society 3227



VOLUME 65, NUMBER 26 PHYSICAL REVIEW LETTERS 24 DECEMBER 1990

[note that 8(x —x')6(y —y') =28(( —g')8(g —tt')]. It is readily seen that (4) can be written in the form

B,q =i [H, q],
where H is the Hamiltonian of the system,

H=„d(dq —, [ —q*(8&+8„)q+ —, cq*[(8~8„'+8„8;')(q*q)]q+(u +u )q*qJ.

We consider the eigenvalue problem for the system with N particles,

Hly) =Elm),

where
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The time variable t is omitted. The vacuum state lo) has the property q!0)=0. The N-particle wave function y is sym-
metric with respect to the permutation of coordinates (g;, rt;), and it satisfies the Schrodinger equation

N JV

—g (8,'+8„')y+c g [6'(&;,)e(rt;, )+6'(rt) )e(&„)]@+g [u)(&, )+u2(rt, )]y=Ey, (lo)
1 I(j 1

where g„=g, —
g~, 8'(g„) =8~ 8((„),and t.'((j) =1 for g, ~

& 0, 0 for („=0,and —
1 for g;, & 0.

Suppose that [Xt(g)1 and [Pk(rt)] are two complete sets of orthonormal eigenfunctions for the following ID
Schrodinger equations with appropriate boundary conditions, respectively:

[ a,'+-u, (p)]X,(p) =.tXt(p), [-~„'+»(g)]&k(g)=pk+k(g),

where a and P are eigenvalues, the subscripts I (k) are quantum numbers, and difTerent I (k) correspond to diA'erent

eigenstates Xt (Pk). Noting that f(g)8'(g) =f(0)b'(g) f'(0)8—(g), the Schrodinger equation (10) for N =2 can be
solved readily. The solution can be generalized to the case N & 2. We have the following result:
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where P are N! permutations. The validity of (12) and
(13) can be checked directly by substituting them into
(io).

DiA'erent sets (l~, l2, . . . , 4) and (k~, k2, . . . , k~),
where 11&12& &l~ and k1&k2& &kN, cor-
respond to diAerent eigenfunctions y. The totality of
them form a complete set of the eigenfunctions for (10).
This can be shown by a continuity argument' with re-
spect to c as follows.

For e =0, irrespective of the permutation symmetry,
N N

@=+X (&, ) g Pk, (ti;) (14)
t=] i =1

is the solution of (10), and the totality of y in (14) is a
complete set of eigenfunctions for (10). If c &0 and
c 0+, using (10) it is easy to show that Q;=~ Xt (g;)

and +;-~ Pk (rl;) must be antisymmetrized, respective-
ly. Thus in the limit c 0+, the totality of

X,„(g,) g(- I)'U & „(n,)
P i 1

i=1
(15)

is a complete set of eigenfunctions for (10). Then by a
continuity argument with respect to c, we see that for
finite c & 0 the totality of y in (12) is a complete set of
the eigenfunctions for (10).

In (12), l, &l, and k, &kj if i~j, otherwise @=0. The
energy spectrum and then the thermodynamic quantities
reveal the characteristics of a system with two species of
independent fermions. Neither of them depends on the
value of the coupling constant e.

We give two examples.
(1) u~ =u..=o. In this case, Xt and Pk are plane

waves. If we impose rigid boundary conditions on y, i.e.,
pl;, =o, t. =pl q, =o.t =0 for all &', t"en

N

g( —I)'+ sin(kt;rt, )
P i=]
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where l =ntr/L and k =mtt/L with n, m =1,2, . . . . The
ground state has quantum numbers [n} =[1,2, . . . , N}
and [m} =[1,2, . . . , N}. At temperature P ', the aver-

age energy per particle and the pressure p of the system
(with L,N ~ and D =N/L being finite) are

where

p(k) =tr '/{1+exp[P(k' —p)]}, (i9)

which satisfies D =f/ dk p(k), and p is the chemical po-
f+ oo

Ep/N =2D ' dk p(k)k tential.
(2) u~(g) =K~( /2 and uq(ri) =K2ri /2 with the con-

—
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stants K„)0, n =1,2. In this case, all the particles are
p =(trP) dk in[1+exp[ —P(k —p)]}, bounded by the applied potentials u~ and u2 in finite

range around g 0, ri 0, and
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where
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0
(22)

p„(l) = I/[1+exp[P((2K, ) ' '(l+ —,
' ) —p„)]}, (23)

n =1,2,

which satisfy N=+t-pp~(l) =gP ppz(k).
Calculations for other potentials u ] and u 2 are

straightforward, provided that the eigenvalue problem

(11) has been solved. The Hamiltonian (7) can also be

generalized to higher dimensions and the details will be

published elsewhere.
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