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Using Chaos to Direct Trajectories to Targets
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A method is developed which uses the exponential sensitivity of a chaotic system to tiny perturbations
to direct the system to a desired accessible state in a short time. This is done by applying a small, judi-
ciously chosen, perturbation to an available system parameter. An expression for the time required to
reach an accessible state by applying such a perturbation is derived and confirmed by numerical experi-
ment. The method introduced is shown to be effective even in the presence of small-amplitude noise or

small modeling errors.

PACS numbers: 05.45.+b

Chaotic systems exhibit extreme sensitivity to initial
conditions. This characteristic is often regarded as an
annoyance, yet it provides us with an extremely useful
capability without a counterpart in nonchaotic systems.
In particular, the future state of a chaotic system can be
substantially altered by a tiny perturbation. If we can
accurately sense the state of the system and intelligently
perturb it, this presents us with the possibility of rapidly
directing the system to a desired state. As we will show
below for a particular example, an initial condition for a
chaotic system which, if left on its own, would require
more than 6000 time steps to reach a small target region
can be directed with small perturbations to the desired
region in only 12 time steps. In this paper, we report a
method for achieving such targeting, and we show that
the method can be effective even in the presence of
small-amplitude noise and small modeling errors.

For simplicity, we consider a three-dimensional con-
tinuous-time dynamical system, dX/dt =F(X). The ex-
tension to higher dimensions is given at the end of the
paper. We assume that model equations describing the
system are known, although they need not be exact. We
now employ a surface of section, and denote the coordi-
nates in the surface of section by &, and the Poincaré
map of & by

€n+l=f(€ma)v (1)

where the map f is necessarily invertible and a is a sys-
tem parameter.' Suppose that we wish to go from a
source point X; to a small region about a target point,
X;. Following the trajectory from X, forward in time,
we find its first intersection with the surface of section
and denote this point &;. Following the trajectory
through X, backward in time, we similarly determine its
first intersection with the surface of section and denote
this point &,. Thus we have reduced our problem to that
of a two-dimensional map in which we desire to go from
&, to the vicinity of £,. We assume that the system pa-
rameter a is available for adjustment at each iterate.
Thus we can replace « in the map (1) by a,. However,
we also suppose that only small adjustments of a are al-
lowed. That is, a, =a+4,, where a is a nominal value

of a and the deviation from a, denoted &, is restricted to
be small.

If the process under study is ergodic, then in the ab-
sence of perturbations (i.e., for a, =a) the time required
to travel from a source point & to a small neighborhood
& of linear size g about a target point &, in the ergodic
set is typically to~1/u (&), where u denotes the natural
probability measure of the chaotic set. The measure
u(g) typically scales with the information dimension,?
D, so the time required obeys

10~ (1/¢)?, )

for small &. Thus in the absence of perturbations, the
amount of time required to reach a desired target in-
creases according to a power law as the size of the target
region decreases. We will see that this power law can be
converted to a much weaker logarithmic increase by ap-
plying a carefully chosen small perturbation.

Now suppose that perturbations of a can be applied.
After one iteration of the return map, the change of the
state, 8E, relative to the point f(&;,a), due to a small
perturbation, &, is given by the Taylor expansion

se= Gf({f;,a) . 3)

Letting &, vary through a small interval, |8,| < &«, Eq.
(3) defines a small line segment through the point
f(&,,a). We denote this line segment &, and we denote
its length 8. Since our system is chaotic, the length of
the image of this line segment will grow roughly geome-
trically with each successive iteration of the map f(&,a).
Let n, denote the number of iterates required for the
small line segment to stretch to a length of order 1. This
typically happens when 8&exp(nA,)~1 if 8¢ is small,
where A, is the positive Lyapunov exponent obtained for
typical initial conditions on the attractor. Defining
ty=A; 'In(1/8£), the length of the line segment be-
comes of order 1 after about 7, iterates (i.e., n,~1;) if
&¢ is small. Without loss of generality, we take the size
of the relevant ergodic region to be of the order of 1 so
that 7, is approximately the number of iterates required
for the line segment to span the ergodic region. Like-

© 1990 The American Physical Society 3215



VOLUME 65, NUMBER 26

PHYSICAL REVIEW LETTERS

24 DECEMBER 1990

wise, if we map the region g backward in time, we find
that its preimage spans the ergodic region after a num-
ber of preiterates which is typically of the order of
72=|%2| ~'In(1/g,) if & is small, where A; is the negative
Lyapunov exponent for the map f for typical initial con-
ditions on the attractor.

Thus we adopt the following procedure. We iterate
the segment 8¢ forward using a, =a for n; iterates until
its length becomes of order unity. We then iterate the
region £ backward for n; iterates until it first intersects
the n, forward iteration of the line segment 8&. Typical-
ly for small 66 and ¢ we have ny=7, and n,=r,.
Iterating a point in the middle of this intersection back-
ward n; times, we find a point on the line segment 6
which is mapped to the target region g in n;+n;
iterates. Knowing this point we can then determine the
required perturbation &, to be applied on the first iterate
from & by using Eq. (3). Note that, for the situation
considered so far, we assume no noise and no modeling
error, and consequently we can achieve targeting with
6, =0 for n=2. For small §¢ and ¢, the total time to go
from &, to & by this method scales as

r=1+1=A" 'In(1/68) +|r,] ~'In(1/g,) . 4

For example, for 66 ~¢,, we have t~In(1/¢,) in contrast
to the power law (2).

In practice, we cannot actually iterate either the line
8& or the region &. Rather, we iterate discrete approxi-
mations to them and make successive refinements until a
sufficiently accurate intersection is obtained. We do this
by putting a fixed number N;>1 of equally spaced
points on 8¢, iterating these points, and joining their im-
ages with straight-line segments. Similarly, we iterate
N,>1 points on the perimeter of & backward in time
and join their images with straight-line segments. Once
an intersection is detected, we refine its accuracy by re-
peatedly halving the intersecting forward and backward
line segments and determining which of the halves actu-
ally contain the intersection. We must achieve accuracy
sufficient to strike the n, backward iterate of the target,
which is a long, thin region with width of order
g exp(—An,). Since we have normalized the size of the
attractor to be of order 1, the curvature of the line
8&(n,) and the long sides of the n; backward iterate of &
are also of order 1. Thus, taking account of the curva-
ture, to resolve the intersection within a distance of
g exp(—An,y), we require that the distance between
points on 8E(n,) and on the n, backward iterate of & be
of order g exp(—A;n,)1"2. The square root results be-
cause the maximum distance between the curve and its
discrete straight-line approximation is quadratic in the
length of the straight-line segment. Each time we halve
our line segments, we increase the resolution by a factor
of 2 at the expense of including three additional points
[one on §&(n,) and one each on the two segments bound-
ing the backward iterate of & near the intersection].
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Thus to resolve the intersection, we require a number of
points N' additional to the original N =N;+ N, points,
where N' obeys

le,exp(—An)]12> 27N, (5)

Using the relation gexp(|A;|n,) ~1, this can be rewritten
as

N'Z 3DIn(1/g), 6)

where D=1+2x,/|1,| is the Lyapunov dimension of the
attractor. We stress that NV is fixed (typically we took
N ~100) and does not depend on & or 6¢. Consequent-
ly, as g is reduced, the required computational effort in-
creases logarithmically in & as shown in Eq. (6).

In order to show why our method of using forward and
backward iterations was employed, we now contrast it
with another conceivable procedure. If one iterated the
line segment & forward until it first intersected the re-
gion &, it would do so on iterate n,+n,. One could then
choose a point in this intersection, iterate the point back-
ward n,+n; steps to find the corresponding point on the
original line segment &&, and then determine &, from Eq.
(3). While this works in principle, the numerical re-
quirements of this pure forward scheme are needlessly
more severe than when we determine an intersection by
iterating 8¢ forward n; steps and & backward n, steps.
In the pure forward method, to detect an intersection be-
tween the target and the n,+n; iterate of the source, we
require that the approximation of 8&(n,+n,) obtained
by joining the N, points with straight-line segments in-
tersect the region &. Since the curvature of §&(n,+n,)
is typically of order 1, we thus require

8&(n+n,y) /N, <el?. 7

The source line will have length unity after n, iterates,
and will then expand by roughly exp(n;A) during the
next n, iterates, where A is the topological entropy.® So
we require

N, 2 & explnn) (8)
or

Ny 2 (1/g)VHIH12. )

Thus the number of points required by the pure forward
method increases exponentially with 1/, but only in-
creases logarithmically with 1/g in the forward-back-
ward method. *

We now illustrate the method with a specific chaotic
system. In particular, we deal with the Hénon map® in
the form x,+; =a+0.3y,,—x,,2 and y,+;=x,, with
a=1.4. As an initial example, we choose the target re-
gion to be a small square centered on &, with edge length
& =0.0038. We find that for a representative pair of
source and target points, say, & =(0.4772, —1.188) and
&, =(0.1371, —1.328), without applying a perturbation,
6062 iterations are required before the orbit from &;
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strikes within the target neighborhood, &. However, if
we are permitted to vary a by up to 1 part in 1000 about
its nominal value, we find that our targeting method
directs the trajectory to the target neighborhood in only
twelve iterations.

To confirm the predicted logarithmic behavior in (4),
the following numerical experiment was performed.
Source and target locations were chosen at random with
respect to the natural measure on the Hénon attractor.
Then we fix a target size ¢, and for each pair of source
and target points, our targeting algorithm, described
above, was applied. The total number of iterations re-
quired to go from &; to & was determined for each pair,
and the results were then averaged over many source-
target pairs. This process was repeated for several values
of g. The neighborhood & was chosen to be a small
square of edge length ¢ centered on &,. The result of
this experiment is shown in Fig. 1. The solid line of
slope A" '+ |1, 7', predicted by Eq. (4), is consistent
with the data. Also shown as a dashed line is the
power-law dependence expected without control from
Eq. (2) with D=1.26 (the information dimension for the
Hénon attractor). The logarithmic dependence of the
time to reach the target on g with control shows dramat-
ic improvement over the power-law dependence without
control.

The preceding discussion demonstrates that targeting
can be achieved for chaotic systems using only small con-
trols. It remains to be shown, however, that the method
discussed can be effective in the presence of noise or
modeling errors. Thus we suppose that the real system
obeys &,+1=g(&,,a)+A,. Here we imagine that our
model map f(&,,a) is slightly in error, and that, un-
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FIG. 1. Average time required to reach typical target neigh-
borhood from typical source with control vs neighborhood size,
& (86 =¢,). Solid line has slope predicted from Eq. (4); dashed
line indicates expected behavior without control. Error bars
are standard error for 25-point means.

known to us, the correct form is g(&,,a). We, further-
more, allow small-amplitude random noise to disturb the
system at each iteration as indicated by the term A,.

To investigate the effect of noise alone, we take f=g.
The following test was performed. Source and target lo-
cations were chosen at random on the Hénon attractor,
and a trajectory between the source and the target neigh-
borhood was found for the case without noise as previ-
ously described. As an example, the neighborhood size
& was chosen to be 0.01 and the time required to hit the
target in the absence of noise and with only 8,70 was
ten iterations. Then for each of the ten iterations, a ran-
dom amount of noise was applied with A, distributed
uniformly in the interval |A,| < As. As shown in Fig. 2
for the case As =0.01, the noise displaced the tenth
iteration to a point (denoted &¢ in the figure) far away
from &,. Since the noise was applied at every iteration,
we next compensated by recomputing the trajectory at
every iteration and adjusting the applied perturbation
correspondingly. That is, at each iterate we used the
map f to determine §, by calculating the intersection of
the forward iteration of the line determined from
8E,+1=06,+0f/da with the backward iteration of the
region &. The result of this procedure is shownAin the in-
set of Fig. 2. The tenth iteration (denoted &o in the
figure) now lies within the target region. Thus we have
shown that our method can be effective in the presence
of small-amplitude noise provided that we apply a
correction &, at each iterate.

It can similarly be shown that targeting can also be
achieved even when the system is imperfectly modeled,
i.e., when f differs slightly from the true map, g. After
each iteration, we have to compensate for the difference
g—f. For example, let us consider the Hénon map for
the case without noise, where f is the Hénon map with
a=1.4, and g— f=0.014; ¢ is still 0.01, and we use the
same source and target as in our noise example (cf. Fig.
2). If we apply our procedure only on the first iterate
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FIG. 2. Source &; and target region & on the Hénon attrac-
tor. Inset: When the targeting procedure is applied at every
iteration, the noise or modeling error can be compensated for,
and &0 and &|o both lie within the target region.
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from &, (as we would if f=g), then the trajectory again
ends at a point (denoted &y in Fig. 2) far from the tar-
get. As before, however, if our targeting algorithm is ap-
plied at every iteration, the tenth iterate (denoted &} in
Fig. 2) arrives in the target neighborhood despite the
modeling error.

To generalize our method to higher dimensions, con-
sider that the map f is N dimensional and the attractor
has k expanding and N — k contracting directions at typ-
ical points. We note that when a k-dimensional surface
and an (N — k)-dimensional surface intersect, generically
they do so at isolated points, and small smooth perturba-
tions will not destroy these intersections or create new
ones. Thus, for a typical point and a typical small k-
dimensional disk D* centered at this point, the nth
iterate of the disk f"(D*) will be a k-dimensional sur-
face and its k-dimensional area will increase with n.
Similarly, if we take an (N — k)-dimensional disk, D" ~X,
centered at a typical point, then f ~"(D™ %) will be an
(N —k)-dimensional surface whose area will increase
with n. As these areas increase, typically they will inter-
sect. We emphasize that targeting can typically be
achieved with any dimensionality N even if we only have
one available adjustable scalar parameter a. To see
this we note the following. Consider a trajectory
& =f'(&,a). If we perturb a from & by an infinitesimal
amount J; at time 7, then at time m > i, a perturbation
of &, given by v;,6; results, where v;, is an N-
dimensional vector which is determined by the partial
derivatives of the map along the trajectory. For typical
&o and f, the vectors vox,Vik, . .. ,Vk—1x are linearly in-
dependent and thus can be used to create the k disk D*.

In conclusion, we have demonstrated that it is possible
to rapidly reach a small, accessible target region in a
chaotic system by applying small perturbations to an
available parameter. The method used is robust against
small-amplitude noise and small modeling errors, mak-
ing it especially suited to practical applications. We em-
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phasize that the problem addressed in this Letter is a
very general one and can be expected to arise often.®
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coordinate embedding technique [F. Takens, in Dynamical
Systems and Turbulence, edited by D. Rand and L. S. Young
(Springer-Verlag, Berlin, 1981), p. 230; N. H. Packard et al.,
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4We note that some improvement can be obtained by using
higher-order fitting (e.g., parabolic rather than linear) of the
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