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Using Chaos to Direct Trajectories to Targets
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A method is developed which uses the exponential sensitivity of a chaotic system to tiny perturbations
to direct the system to a desired accessible state in a short time. This is done by applying a small, judi-
ciously chosen, perturbation to an available system parameter. An expression for the time required to
reach an accessible state by applying such a perturbation is derived and confirmed by numerical experi-
ment. The method introduced is shown to be eA'ective even in the presence of small-amplitude noise or
small modeling errors.

PACS numbers: 05.45.+b

Chaotic systems exhibit extreme sensitivity to initial
conditions. This characteristic is often regarded as an
annoyance, yet it provides us with an extremely useful

capability without a counterpart in nonchaotic systems.
In particular, the future state of a chaotic system can be
substantially altered by a tiny perturbation. If we can
accurately sense the state of the system and intelligently
perturb it, this presents us with the possibility of rapidly
directing the system to a desired state. As we will show

below for a particular example, an initial condition for a
chaotic system which, if left on its own, would require
more than 6000 time steps to reach a small target region
can be directed with small perturbations to the desired

region in only 12 time steps. In this paper, we report a
method for achieving such targeting, and we show that
the method can be effective even in the presence of
small-amplitude noise and small modeling errors.

For simplicity, we consider a three-dimensional con-
tinuous-time dynamical system, dX/dt =F(X). The ex-
tension to higher dimensions is given at the end of the
paper. We assume that model equations describing the
system are known, although they need not be exact. We
now employ a surface of section, and denote the coordi-
nates in the surface of section by (, and the Poincare
map of ( by

g„+1=f(g„,a),
where the map f is necessarily invertible and a is a sys-

tem parameter. ' Suppose that we wish to go from a
source point X, to a small region about a target point,
X, . Following the trajectory from X, forward in time,
we find its first intersection with the surface of section
and denote this point (,. Following the trajectory
through X, backward in time, we similarly determine its
first intersection with the surface of section and denote
this point g, . Thus we have reduced our problem to that
of a two-dimensional map in which we desire to go from

g, to the vicinity of (,. We assume that the system pa-
rameter a is available for adjustment at each iterate.
Thus we can replace a in the map (1) by a„. However,
we also suppose that only small adjustments of a are al-
lowed. That is, a„=a+6„,where a is a nominal value

8 (g„a)
6).

a
(3)

Letting 81 vary through a small interval, ibii (8+, Eq.
(3) defines a small line segment through the point
f(g„a). We denote this line segment bg, and we denote
its length bg. Since our system is chaotic, the length of
the image of this line segment will grow roughly geome-
trically with each successive iteration of the map f(g, a).
Let ni denote the number of iterates required for the
small line segment to stretch to a length of order 1. This
typically happens when 8(exp(nikl) —1 if 8( is small,
where X i is the positive Lyapunov exponent obtained for
typical initial conditions on the attractor. Defining

'ln(1/8(), the length of the line segment be-
comes of order 1 after about rl iterates (i.e., ni —rl) if
8$ is small. Without loss of generality, we take the size
of the relevant ergodic region to be of the order of 1 so
that ~i is approximately the number of iterates required
for the line segment to span the ergodic region. Like-

of a and the deviation from a, denoted 8„, is restricted to
be small.

If the process under study is ergodic, then in the ab-
sence of perturbations (i.e., for a„=a) the time required
to travel from a source point g, to a small neighborhood
e, of linear size e, about a target point g, in the ergodic
set is typically ro-1/p(@), where p denotes the natural
probability measure of the chaotic set. The measure
p(e, ) typically scales with the information dimension,

D, so the time required obeys

rp- (1/e, ) D, (2)

for small s, . Thus in the absence of perturbations, the
amount of time required to reach a desired target in-

creases according to a power law as the size of the target
region decreases. We will see that this power law can be
converted to a much weaker logarithmic increase by ap-

plying a carefully chosen small perturbation.
Now suppose that perturbations of a can be applied.

After one iteration of the return map, the change of the
state, Bg, relative to the point f((„a), due to a small

perturbation, Bi, is given by the Taylor expansion
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~I+ ~2 ~l '1«1/g)+ l&2I
' in(1/«) (4)

For example, for 8g-«, we have r-1n(1/«) in contrast
to the power law (2).

In practice, we cannot actually iterate either the line
8'g or the region e, . Rather, we iterate discrete approxi-
mations to them and make successive refinements until a
suSciently accurate intersection is obtained. We do this
by putting a fixed number N, »1 of equally spaced
points on @, iterating these points, and joining their im-

ages with straight-line segments. Similarly, we iterate
Nf &&1 points on the perimeter of s, backward in time
and join their images with straight-line segments. Once
an intersection is detected, we refine its accuracy by re-
peatedly halving the intersecting forward and backward
line segments and determining which of the halves actu-
ally contain the intersection. We must achieve accuracy
sufficient to strike the n2 backward iterate of the target,
which is a long, thin region with width of order
«exp( —

A, ~n2). Since we have normalized the size of the
attractor to be of order 1, the curvature of the line

Bg(n ~) and the long sides of the n2 backward iterate of e,
are also of order 1. Thus, taking account of the curva-
ture, to resolve the intersection within a distance of
«exp( —

A, ~n2), we require that the distance between
points on b((n() and 'on the n2 backward iterate of e, be
of order [«exp( —k~n2)]'~ . The square root results be-
cause the maximum distance between the curve and its
discrete straight-line approximation is quadratic in the
length of the straight-line segment. Each time we halve
our line segments, we increase the resolution by a factor
of 2 at the expense of including three additional points
[one on 8((n ~) and one each on the two segments bound-

ing the backward iterate of @ near the intersection].

wise, if we map the region s( backward in time, we find

that its preimage spans the ergodic region after a num-

ber of preiterates which is typically of the order of
ln(1/«) if « is small, where kq is the negative

Lyapunov exponent for the map f for typical initial con-
ditions on the attractor.

Thus we adopt the following procedure. We iterate
the segment b( forward using a„=a for n~ iterates until
its length becomes of order unity. We then iterate the
region s& backward for n2 iterates until it first intersects
the n~ forward iteration of the line segment b'g. Typical-
ly for small Bg and «we have n~=r~ and n2=r2.
Iterating a point in the middle of this intersection back-
ward n~ times, we find a point on the line segment g
which is mapped to the target region s( in n

~
+ n2

iterates. Knowing this point we can then determine the
required perturbation 8~ to be applied on the first iterate
from g, by using Eq. (3). Note that, for the situation
considered so far, we assume no noise and no modeling
error, and consequently we can achieve targeting with
8„=0for n ~ 2. For small bg and « the total time to go
from g, to @ by this method scales as

Thus to resolve the intersection, we require a number of
points N' additional to the original N=N, +N, points,
where N' obeys

[«exp( —X(n2)] ' & 2 (s)

Using the relation zexp(lk2lnq) —1, this can be rewritten
as

N'& —,
' D ln(1/«), (6)

where D =1+X~/lk2l is the Lyapunov dimension of the
attractor. We stress that N is fixed (typically we took
N-100) and does not depend on «or Bg. Consequent-

ly, as « is reduced, the required computational eA'ort in-

creases logarithmically in «as shown in Eq. (6).
In order to show why our method of using forward and

backward iterations was employed, we now contrast it
with another conceivable procedure. If one iterated the
line segment g forward until it first intersected the re-

gion a(, it would do so on iterate n ~+n2. One could then
choose a point in this intersection, iterate the point back-
ward n]+n2 steps to find the corresponding point on the
original line segment 8(, and then determine B~ from Eq.
(3). While this works in principle, the numerical re-
quirements of this pure forward scheme are needlessly
more severe than when we determine an intersection by
iterating bg forward n~ steps and s( backward n2 steps.
In the pure forward method, to detect an intersection be-
tween the target and the n]+n2 iterate of the source, we

require that the approximation of 8g(n~+n2) obtained

by joining the N, points with straight-line segments in-

tersect the region a(. Since the curvature of bg(n~+n2)
is typically of order 1, we thus require

8((n~+n2)/N, & eP . (7)

The source line will have length unity after n] iterates,
and will then expand by roughly exp(n2A, ) during the
next n2 iterates, where A, is the topological entropy. So
we require

or

N, & « '"exp(ny, )

N ) (1/ )&('i&21+in

(8)

Thus the number of points required by the pure forward
method increases exponentially with 1/«, but only in-
creases logarithmically with 1/« in the forward-back-
ward method. "

We now illustrate the method with a specific chaotic
system. In particular, we deal with the Henon map in

the form xn+] =a+0 3p'n xn and yn+] &n~ with
a =1.4. As an initial example, we choose the target re-
gion to be a small square centered on g( with edge length
~& =0.0038. %'e find that for a representative pair of
source and target points, say, g, =(0.4772, —1.188) and

(( =(0.1371,—1.328), without applying a perturbation,
6062 iterations are required before the orbit from (,
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from (, (as we would if f =g), then the trajectory again
ends at a point (denoted (Io in Fig. 2) far from the tar-
get. As before, however, if our targeting algorithm is ap-
plied at every iteration, the tenth iterate (denoted gIo in
Fig. 2) arrives in the target neighborhood despite the
modeling error.

To generalize our method to higher dimensions, con-
sider that the map f is N dimensional and the attractor
has k expanding and N —k contracting directions at typ-
ical points. We note that when a k-dimensional surface
and an (N k)-d—imensional surface intersect, generically
they do so at isolated points, and small smooth perturba-
tions will not destroy these intersections or create new
ones. Thus, for a typical point and a typical small k-
dimensional disk D centered at this point, the nth
iterate of the disk f"(D") will be a k-dimensional sur-
face and its k-dimensional area will increase with n.
Similarly, if we take an (N k)-dim—ensional disk, D
centered at a typical point, then f "(D ") will be an
(N —k)-dimensional surface whose area will increase
with n. As these areas increase, typically they will inter-
sect. We emphasize that targeting can typically be
achieved with any dimensionality N even if we only have
one available adjustable scalar parameter a. To see
this we note the following. Consider a trajectory
(;=f'((o,a). If we perturb a from a by an infinitesimal
amount 6; at time i, then at time m &i, a perturbation
of g given by v; b; results, where v; is an N-
dimensional vector which is determined by the partial
derivatives of the map along the trajectory. For typical
go and f, the vectors vo t„v~ t„.. . , vt, —

~ t, are linearly in-
dependent and thus can be used to create the k disk D .

In conclusion, we have demonstrated that it is possible
to rapidly reach a small, accessible target region in a
chaotic system by applying small perturbations to an
available parameter. The method used is robust against
small-amplitude noise and small modeling errors, mak-
ing it especially suited to practical applications. We em-

phasize that the problem addressed in this Letter is a
very general one and can be expected to arise often.
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