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We have achieved control of chaos in a physical system using the method of Ott, Grebogi, and Yorke
[Phys. Rev. Lett. 64, 1196 (1990)]. The method requires only small time-dependent perturbations of a

single-system parameter and does not require that one have model equations for the dynamics. We
demonstrate the power of the method by controlling a chaotic system around unstable periodic orbits of
order 1 and 2, switching between them at will.

PACS numbers: 05.45.+b, 75.80.+q

In a recent Letter, Ott, Grebogi, and Yorke' (OGY)
demonstrated that one can convert the motion of a
chaotic dynamical system to periodic motion by control-
ling the system about one of the many unstable periodic
orbits embedded in the chaotic attractor, through only
small time-dependent perturbations in an accessible sys-
tem parameter. They demonstrated their method nu-

merically by controlling the Henon map.
Far from being a numerical curiosity that requires ex-

perimentally unattainable precision, we believe this
method can be widely implemented in a variety of sys-
tems including chemical, biological, optical, electronic,
and mechanical systems. In this Letter we report the
control of chaos in a physical system, a parametrically
driven magnetoelastic ribbon, using the method of OGY.

Theoretical background The m.—ethod is based on the
observation that unstable periodic orbits are dense in a
typical chaotic attractor. Their method assumes only the
following four points. First, the dynamics of the system
can be represented as arising from an n-dimensional non-
linear map (e.g. , by a surface of section or time one re-
turn map), the iterates given by g„+i=f((„,p), where p
is some accessible system parameter. Second, there is a
specific periodic orbit of the map which lies in the attrac-
tor and around which one wishes to stabilize the dynam-
ics. Third, there is maximum perturbation Bp in the
parameter p by which it is acceptable to vary p from the
nominal value po. Finally, one assumes that the position

of the periodic orbit is a function of p, but that the local
dynamics about it do not vary much with the allowed
small changes in p. Note that while the dynamics is as-
sumed to arise from a map, one needs no model for the
global dynamics. These assumptions would seem to al-
low for the control of any chaotic system for which a
faithful Poincare section can be constructed. The con-
struction of a map from and the location of periodic or-
bits in experimental data are straightforward processes.

To control chaotic dynamics one only needs to learn
the local dynamics around the desired periodic orbit by
observing iterates of the map near the desired orbit and
fitting them to a local linear approximation of the map
f. From this, one can find the stable and unstable ei-
genvalues as well as the local stable and unstable mani-
folds (given by the eigenvectors). Next, by changing p
slightly and observing how the desired orbit changes po-
sition, one can estimate the partial derivatives of the or-
bit location with respect to p.

To control the chaos, one attempts to confine the
iterates of the map to a small neighborhood of the
desired orbit. When an iterate falls near the desired or-
bit, we change p from its nominal value po by Bp, there-
by changing the location of the orbit and its stable mani-
fold, such that the next iterate will be forced back to-
ward the stable manifold of the original orbit for p=po.
[Figure 1 illustrates this method for the case of a saddle
fixed point located at gF(po). ] That the method of OGY
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FIG. 1. Schematic of the OGY control algorithm for a sad-

dle fixed point: (a) The nth iterate („falls near the fixed point
gF(p3). (b) Turn on the perturbation of p to move the fixed
point. (c) The next iterate is forced onto the stable manifold
of (F(po) Turn off. the perturbation.

rests on attempting to force the dynamics to stay in the
neighborhood of an unstable periodic orbit in the attrac-
tor makes it quite diA'erent from other previously pub-
lished methods from removing chaos.

Experimental setup and results. —The experimental
system consisted of a gravitationally buckled, amorphous
magnetoelastic ribbon. The ribbon material belongs to a
new class of amorphous magnetostrictive materials' that
have been found to exhibit very large reversible changes
of Young's modulus E(H) with the application of small
magnetic fields. ' The ribbon was clamped at the base
to yield a free vertical length greater than the Euler
buckling length, thus giving an initially buckled con-
figuration. The ribbon was placed within three mutually
orthogonal pairs of Helmholtz coils, which allowed us to
compensate for the Earth's magnetic field and to apply
an approximately uniform vertical magnetic field along
the ribbon. The Young's modulus of the ribbon was
varied by applying a vertical magnetic field having the
form H=Hd, +H.„cos(2trft). To lowest order, the rib-
bon was not driven by magnetic forces, but was forced by
gravity as E(H) was varied. The magnetic-field ampli-
tudes were typically set in the range 0.1-2.5 Oe. A sen-

sor measured the curvature of the ribbon near its base.
Other details of the experiment can be found in Refs. 6
and 7.

The data were time-series voltages V(l) acquired from
the output of the sensor. Voltages were sampled at the
drive period of the ac field (at times t„=n(f) by trig-
gering a voltmeter off the ac signal.

By considering the sampled voltages as arising from
iterates of a map, X„=V(t„),we are able to directly ap-
ply the control theory outlined above. We selected Hd,
to be the parameter to be varied to achieve control (i.e.,

p =Hd, ). First, we chose a parameter region (H„„Hd„.
and f) such that the ribbon was oscillating chaotically.
In order to simplify the comparison with the theory, the
parameter region chosen was one in which the dynamics
of the iterates near the orbits of interest clearly appears
to be two dimensional (i.e., the two-dimensional return
map, X„+~vs X„,is always single valued in the neigh-
borhood of the orbits of interest). The first 2350 itera-
tions (in gray) in Fig. 2(a) are of the uncontrolled time-
series data for H, , =2.050 Oe, Hd, =0.112 Oe (=pp),
and f=0.85 Hz (from 1 to 2350 iterations). In Fig.
2(b), the return map for the uncontrolled system is
shown in gray. We estimate the dynamical noise in our
system, i.e., the deviation of the motion of the ribbon
away from deterministic chaos, to be +0.005 V, since
any structure on the attractor below this scale is blurred
out.

We found the approximate location LF of an unstable
period-1 orbit of the map (i.e. , a fixed point) by noting
that any fixed point of the dynamics must lie along the
X„+~=X„line in the plot of the return map. To stabi-
lize this fixed point we next examined the data series and
found all pairs of iterates both of which fell within 0.05
V of the approximate fixed point. To these pairs of
iterates we fit the approximate local linear map M,
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FIG. 2. (a) Time series of X„=V(t„)for Hd, (nominal) =0.112 Oe, H, ,=2.050 Oe, and f=0.85 Hz. Control was initiated after
iteration 2350. (b) The first return map (X„+1vs X„)for the controlled system (in black) is superimposed on the map for the un-
controlled system (in gray). The large density of points of low values of X„is due to the saturation of the sensor for large excursions
of the ribbon away from the sensor.
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Knowing M, we could extract the stable and unstable
eigenvalues (X„k„)and eigenvectors (e„e„).We actu-
ally only needed )j.„and the unstable contravariant eigen-
vector ' f„,given by f„e„=1 and f„e,=0.

Next, we changed Hd, slightly (Hd, =0.120 Oe) and
collected another set of data. We again found the pre-
cise location of the fixed point and calculated g=t)(F/
Bp = b(F/BHd, .

To control the oscillations of the ribbon, we set p =po,
when ig„—gF l (8(~, we attempted control. Here, 8(+
= [(&„—1)/l„]8p~(g f„)is the maximum distance
from the stable manifold of (F for which one can achieve
control for a given Bp~. As long as the iterate was
within 8(+ of gF, we perturbed p from po by Bp =C(g„
—(F) f„,where Ref. 1 gives C=[X„/(X„—I)j/g f, .

Since noise and errors in determining (F, f„,g, and X„,
as well as any inaccuracies due to the linear approxima-
tion, prevented us from getting the next iterate exactly
on the stable manifold, a new Dp was calculated for each
iterate. Note that both 8(+ and C can be computed at
the start of the run, and that the calculations at each
iterate are very simple. We could apply the changes to
the applied magnetic field and change the Young's
modulus of the ribbon in under 1 ms. Thus, our change
in p was eA'ectively instantaneous in relation to the 1.2-s

period of the ac drive.
At the values of H,„Hd„andf ment. ioned above, we

calculated XF =3.398+ 0.002, h'LF/hHd, = —337 ~ 50,
f„=(t2)+ (0 i'), and X„=—1.2~0.2. These num-

bers are typical of our data in that the fixed point can be
determined with a great deal of accuracy, but the com-
puted values of the eigenvalues and eigenvectors are sen-

sitive to the noise on the attractor. Fortunately, the con-
trol is quite insensitive to variations in ) „and f„(e.g. ,

using k„=—1.4 yielded results similar to those using
) „=—1.2).

We have been able to control the oscillations of our
ribbon for over 200000 iterates ()64 h), with a max-
imum allowed perturbation of 0.01 Oe. Figure 2(a)
(after 2350 iterations) shows the controlled time series
(in black) and Fig. 2(b) the return map (superimposed,
in black, on the attractor for the uncontrolled system).
The control was to ~0.015 V of the desired fixed point,
about triple the dynamic noise present on the uncon-
trolled attractor.

We have also controlled the motion about a period-2
oscillation (again for over 50000 iterates and with Sp+
=0.01 Oe). The same procedure outlined above is fol-
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FIG. 3. Time-series data as the system is switched from no
control to control about the fixed point (at n =2360), to control
about the period-2 orbit (at n =4800), and back to control
around the fixed point (at n =7100).
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lowed except using g„=(z,'""). The control was adjust-
ed only at every other data iterate, about the periodic
point at XF =3.926+ 0.004. As a demonstration of the
versatility of the method, Fig. 3 shows time-series data
while the system was switched between no control and
control about the fixed point or the period-2 orbit, again
with the same values of Hd, (nominal), H„,and f as f.or
Fig. 2.

In conclusion, we have demonstrated the first control
of chaos in a physical system, using the method of Ott,
Grebogi, and Yorke. Some advantages of this method
are the following: (1) No model for the dynamics is re-
quired; (2) the computations required at each iterate are
minimal; (3) the required changes in the parameter can
be quite small; (4) diAerent periodic orbits can be stabi-
lized for the same system in the same parameter range;
(5) control can be achieved even with imprecise mea-
surements of the eigenvalues and eigenvectors; and (6)
this method is not restricted to periodically driven
mechanical systems, but extends to any system whose
dynamics can be characterized by a nonlinear map.
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contrast this method with the resonant control method of
Hubler and co-workers that has been applied to nonlinear pen-
dula and other oscillators with nonlinear potentials. Their
method diAers from the method described above in at least
three important respects. (I) One must have or construct
model equations for the dynamics. (2) One must be able to
modify the dri ving force of these equations, and these
modifications can be rather large. The method of OGY re-

quires no model equations and the perturbations could be to
any accessible system parameter. (3) Rather than apply
corrections as the dynamics wanders from a given unstable or-
bit, the resonant control method seeks to modify the underlying

dynamical system such that the goal dynamics become stable
solutions of the system (and thus uses no feedback).
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