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Direct Energy Transfer in Polymer Systems
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We study the direct incoherent energy transfer from a single excited donor molecule to acceptors,
which all are attached to chainlike polymers, randomly distributed in viscous solvent. We present both
analytical and simulation results that document the essential departure from Forster-type decay laws

due to correlations in acceptor placement.

PACS numbers: 82.20.—w, 05.20.—y, 05.40.+j

Following the seminal work of Forster,' the direct en-
ergy transfer from an energetically excited donor mole-
cule to acceptor molecules embedded in condensed media
has been of considerable interest and has been extensive-
ly studied in various ramifications.’”” Much emphasis
has been put on studying energy relaxation in systems
where acceptors are mutually independent and occupy
random positions in d-dimensional Euclidean space or
occur on regular infinite sublattices. However, the re-
cent increase in interest in investigations of disordered
media, e.g., clays, micelles, polymer solutions, and po-
rous solids, has encouraged the examination of how the
relaxation of excited molecules is modified in systems
that impose spatial restrictions on acceptor or donor dis-
tributions. For instance, the decay forms were found for
fractal lattices® and for porous media with various pore
geometries.® One should also mention the remarkable
results concerning donor decay in systems where one
donor and one acceptor are placed at the ends of an iso-
lated immobile polymer chain, or when the chain con-
tains a small concentration of randomly placed accep-
tors.'® The outcome of these works®™'® is that the re-
strictions in space cause essential deviations from the
Forster decay laws.

In this paper we focus on some other aspects of geo-
metrical restrictions on the acceptor distribution. We
consider polymer solutions (with mean concentration of
polymer chains C.,) where all segments of the polymer
chains (V segments per each chain, N> 1) are the ac-
ceptors for a single immobile donor molecule. We as-
sume that the polymer chains are immobile and mutually
independent, i.e., the acceptors on one chain are correlat-
ed by the fixed covalent bonds that join them, and in-
dependent of the acceptors placed on the other chains.
Here we consider the case of isotropic multipolar in-
teractions. For these, the rate of energy transfer from

the donor to an acceptor is W(r) =C4r ~".

This paper is organized as follows: First, we study the
ensemble-averaged decay function for d-dimensional
Gaussian coils and evaluate the exact decay forms in
three dimensions. Next, we present the results of numer-
ical simulations and compare them with 2D decay forms
obtained analytically. Last, we reproduce the results ob-
tained for Gaussian coils by means of simple scaling
arguments and extend this scaling approach to non-
Gaussian chain conformations.

The relaxation of an excited donor located at the ori-
gin due to the direct energy transfer to acceptors that act
independently and occupy positions R;; of a given struc-
ture is governed by

F(t,Ri)=exp [ — 12 2W(R;) |, (1)
i
where index i extends over all chains (K chains in
volume V, K/V=C, for K,V— ), and index j ex-
tends over all acceptors occupying each Gaussian chain.
Averaging over all configurations of the acceptor struc-
ture one obtains

P
(1) =<,'I;II Ek, [exp [ —t?W(RU)] ] >Ro.’ :

The angular brackets refer to averaging by {R;}, uni-
formly distributed with mean concentration C, =2C,.
The symbol Eg[---1] denotes the Wiener integration
along the trajectory of /th chain with starting point at
Ry;. Replacing all Ry; in Eq. (2) by the origin, one gets

K .
(1) =<,l:[1 E} [exp [ - t;W(R,-_, -Ro,-)} DR“‘ .

Since all chains are mutually independent, we can omit
the subscript i in Eq. (2),

(1) =<{E0 [exp [ —t;W(Rj —Ro)] ] }K>Ro.

()

Consequently, an exact averaging can be carried out:

=1 =] =ofoe 5w =) || o= 1 fary i oo =] |

=exp[—Cedeo{l —E[exp[—t?W(Rj—Ro)”H ,
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According to the Feynman-Kac theorem the Wiener in-
tegration in Eq. (3) is associated with the following
Schrodinger equation:

9G(r,Ro,N)/AN=D*AG(r,Ro,N) —tW(r)G(r,Ro,N) ,
(4a)
G(r,Ro,N=0)=6(r—Ry), D*=a’/2d,

where a is the segment mean length, A and §(r — Rg) are
the d-dimensional Laplacian and delta function, and

E [exp [—zZW(R, —Ro)] } =fer(r,Ro,N). (4b)

Next, we introduce the location-averaged function

g(r,N) =de()G(",R0,N) .

—2/n—2 —1/n=2

In the rescaled variables t =Nt and x =rt
(i.e., small “time” t corresponds to large 1) we rewrite
Egs. (4) as follows:

0g/0t=D*A.g—C4x ""g, gl.=0=1, (5a)

®(1) =expl— 19" 20(0)],
(5b)

0(z) =Cefdx[1 —g(x,1)].

Equation (5a) cannot be solved exactly for physically in-
teresting transfer rates W(r). However, we can avoid
the cumbersome calculations by resorting to a visual
analogy: Evidently, one can deduce that the function
expl—Q(1)] is tantamount to the mean-field representa-
tion of the probability that an excited state, which
diffuses (with diffusion coefficient D*) in the presence of
randomly distributed uncorrelated acceptors, survives
until “time” 7. For an extensive review on this subject
see, e.g., Refs. 4-6. We emphasize, however, that Egs.
(4) or (5) entail the exact (not mean-field) many-
particle solution to the initial problem of donor decay in
systems with polymeric acceptors.

We begin with the three-dimensional case. At the ini-
tial stages, small 7, the continuous diffusion of an excited
state is not essential and the energy is transferred only
to the nearest acceptor environment. This leads to the
Forster-type decay

Q) =41 —3/n)C.(Cy1)*",

where I'(z) is the gamma function. As 7 grows the
diffusion becomes decisive and one has for Q(z) the
“migration-accelerated” dependence®'!!?

Q(1) =4zD*RsC, [l +2Rs/(xD* )] | (6)
where the “effective” radius Rg equals®'"!?
_ o L=v [ Ca ]
Rs=v ra+v) | p* ] ’

with v=1/n—2. Inserting Q(z) from Eq. (6) into Egs.
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(5) we obtain the large-7 decay,
@ (1) =expl—20(1 —3/n)e, N O~"/"(C42) ), (7)

i.e., Forster-type dependence; and for intermediate times
t, the novel stretched exponential law,

(1) =expf — ye,N'*(t/T)"/" 2
x[1+2y(6/7) " 2(/T) " 21}, (8)

where ¢, is the volume fraction of polymer, g, =4nCp
X Na3/3, and the numerical factor y = 1 depends on spa-
tial dimensionality, index n, and characteristic time
T=(aN'?)"/C4N. One should remark that T is the
“crossover” time from (8) to (7) and the Forster-type
dependence (7) can hardly be observed since ®(T)
~exp(—N ') is exponentially small for large N. Last,
we mention that for 1t < T the second term in square
brackets in (8) is small compared to unity and the tem-
poral behavior of ®(z) is governed by the leading first
term.

Next, we consider the donor decay in two dimensions.
For this, let us notice that Q(r) in Eq. (6) is simply

o =c. [ Kks(r, 9)

where Ks(z) is the three-dimensional Smoluchowsky
“diffusive” constant.'® It is easy to show that for large
“times” t, Eq. (9) still holds in two dimensions, where in
approximate form'*

Ks(t)=4rD*exp(z)/E (z), z=—R/4D*z, (10)

where E|(z) is Euler function. Combining Egs. (9),
(10), and (5) one gets the intermediate asymptotic de-
cay,

2e,expl— (t/T)¥" 2]
E\((/T)"™2) '

where g, =nCNa’. Turning now to the large-z limit
we find that the Forster-type decay is restored.

Now, we present the results of illustrative computer
simulations of donor decay in systems with polymeric ac-
ceptors. For this computation we employed the follow-
ing simple lattice model. We consider a two-dimensional
lattice containing 300X 300 sites, in which some are oc-
cupied by segments of freely jointed chains. The realiza-
tions of polymer chains on the lattice are constructed as
follows. We randomly choose X =30 ‘“seed” sites and
grow from them (with periodic boundaries) freely joint-
ed chains containing N =3000 segments each. Natural-
ly, the value of XV differs from the “real” concentration
of lattice sites occupied by the polymer chain segments,
since each chain can intersect its own trajectory and the
trajectories of the other chains. We take into account
this discrepancy by substituting the real concentration of
occupied sites into the analytical dependence (11) in-
stead of the value C/V. Next, on the lattice with a

®(1) =exp | — an
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given chain realization we randomly chose j =100 donor
positions and calculate the averaged-over-;j donor decay
function corresponding to this chain realization. The
donor decay function averaged over ten chain realiza-
tions is plotted in Fig. 1 along with the novel analytical
result (11). The numerical data are quite consistent
with our analytical results.

Next, we make an effort to reproduce (7) and (8) by
means of the other approach, having in mind the further
extension to the case of non-Gaussian chain conforma-
tions, e.g., swollen coils, rodlike molecules, and branched
polymers. The energy relaxation is, in general, governed
by the probability distribution for the existence of
acceptor-free volumes V4R, where V, is the volume of
the d-dimensional unit sphere. If one assumes a Pois-
sonian distribution of uncorrelated acceptors, the proba-
bility P.,,(R) to have an acceptor-free volume V of ra-
dius R is exp(— V4RYC,c), where Cyc is the mean con-
centration of acceptors. One can show that for a Pois-
sonian distribution of acceptors the ensemble-averaged
decay is

d(t)=exp | —dVyCacc

XfR""dR{l—exp[—tW(R)]} .

Evaluating the integral exactly, one arrives at Forster
decay. On the other hand, the saddle-point method
reproduces this decay and shows that ®(¢) is governed
by ®(t) = P.,(R(t)), where R(1) is defined via the
“black sphere” relation tW(R(z)) =1. We will base our
further considerations on the latter expression. The
analogous distribution for the existence of chain-free
(acceptor-free) volumes was recently derived'® for poly-
mer solutions containing mutually independent polymer
coils. For Gaussian 3D coils such a distribution was

1 -
Pt

T

21 40" ct

FIG. 1. Comparison of analytical predictions for ®(¢) [Eq.
(11) with n=6 and a=1, solid line] with simulation results
(dashed line). The total concentration of acceptors (sites occu-
pied by polymers) is C,.. =0.4; 3000 acceptors per chain.

evaluated exactly, 15

P.w(R) =cxp{ —2V;CaR’
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Equation (12) shows that on large scales, above the
correlation length Ry =aN 2, the acceptor distribution
has Poissonian properties, while for R < Ry, it is inho-
mogeneous. Correspondingly, we can expect quite differ-
ent temporal behavior of energy relaxation at intermedi-
ate and large [R(z) > R.] times. In the large-s limit
[small “times” 7 in Egs. (5)], R(z) is defined via
tINW(R(t))=1 and, therefore, we reproduce the
Forster-type result (7). For R(z) less than the correla-
tion length (large ©), the situation is more complicated
since both reaction and “diffusion” terms in Eq. (5a) are
essential. It means that one must account for two dis-
tinct reaction channels, and the energy relaxation is
governed by the effective rate constant® K.r=KKs/(K
+Ks), where K is Smoluchowsky-type “diffusive” con-
stant, Ks=47D*R, and K is the ‘“chemical” constant,
K=1fR‘7'W(R)dR. Some variational-principle-like
arguments entail the following definition of R(r) for
R(1) < Rey: It must depend on ¢ in such a way that Kg
is maximal. For Gaussian coils it leads to the relation
R(1) = (C4t/D*)"""2. Substituting this scaling law
into the second term in curly brackets in (12), we recov-
er the decay of Eq. (8).

Now, we turn to the case of non-Gaussian chains. The
corresponding cavity-size distribution P, (R) has the
following form: '

Pe(R) =expl—2V,CnRY— CeyNa“(R/a)* ™1, (13)

where d; is the fractal dimension of polymer chain which
relates the “mass” N = (R/a)¥ to the radius of coil.
For instance, for swollen coils dy is inverse to the Flory
indice vp =3/d+2, i.e., dy=1/vr. For rodlike molecules
dy equals unity in all dimensions. For branched poly-
mers in dilute solution dy =2 in 3D and near the gelation
threshold d; = 2.5 (see, e.g., Refs. 16-18).

Equation (13) has Poissonian and fractal terms, where
the first one dominates above the correlation length. It
means that the long-time decay (7) is universal and in-
dependent of the conformations of the polymers. In con-
trast, at intermediate times the temporal behavior is
essentially influenced by the chain conformations. Max-
imizing K.y, where Kg ~a”R‘™Y and K
changed, one gets that R(z) scales as (CAt/adf)
Substituting this scaling law into the second term in Eq.
(13), we find the intermediate-time decay,

(D(I) = CXP[ - CchNa’(C,qt )B] ,

is not
\/n—d,

(14)
y=d/(n—d)/(n—d;), p=(d—d;)/(n—dy).
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To summarize, we have studied the direct incoherent
donor decay in a system with correlations in the acceptor
distribution, i.e., in a system where acceptors are not
randomly placed but are attached to the segments of im-
mobile polymer chains. We have shown that correlations
in the acceptor placement drastically influence the relax-
ation of probe molecules over the entire time domain.
On the one hand, at intermediate times the temporal be-
havior is governed by novel decay laws [(8) and (14)]
which are dependent on chain conformations. These de-
cay laws define the deactivation of the bulk of excited
donors. On the other hand, in the large-time limit the
universal Forster-type time dependence is restored.
However, the dependence on the concentration of accep-
tors, CendV, in Eq. (7) is suppressed due to the correla-
tion-induced screening parameter N © ="/,
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