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Fragmentation of Magnetic Flux in Anisotropic Superconductors
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It is shown that in anisotropic superconductors uniform current flow can be unstable for current densi-
ties jj I &j & jfp, where jf[ and jf2 essentially depend on the orientation of j. The instability leads to a
stratification of the magnetic flux into macroscopic domains (macrovortices). Densities of closed shield-
ing currents circulating inside the macrovortices can be well above the mean density of the transport
current. The relation of such a macrovortex structure to the magnetic granularity of high-T, oxides is
discussed. The anisotropy is shown to result in the instability of both the Bean critical-state model and
the uniform vortex glass with current-voltage characteristic of the form Vtx exp( —const/j").

PACS numbers: 74.70.Vy, 74.60.Ge, 74.60.Jg

Properties of high-T, superconductors are highly an-
isotropic because of their layered crystalline structure
and the existence of specific planar defects (twins, stack-
ing faults, grain boundaries, etc.). The anisotropy re-
sults in a noncollinearity of the magnetic induction B
and the magnetic field H, ' and low values and anisotro-

py of tilt and shear elastic moduli of the vortex lattice, '

which considerably reduces the stability of the mixed
state with respect to the entanglement and reconnection
of vortices and the creation of dislocations and other de-
fects. This may lead to novel vortex structures such
as liquid phases, vortex glass, ' two-dimensional
(2D) vortices localized at the CuOq planes, ' etc.

On the other hand, the eff'ect of the anisotropy on the
absolute stability of both equilibrium and dissipative vor-
tex structures has not been studied yet. This effect can
prove to be of great importance especially for nonlinear
resistive states, where vortex structures are always meta-
stable and the anisotropy essentially influences the elec-
trodynamics of a superconductor. In this paper I consid-
er the macroscopic electromagnetic stability of the resis-
tive states in anisotropic superconductors, provided that
the details of the vortex structure are inessential. It is
shown that the uniform current flow becomes unstable in
the case of strong nonlinearity of the current-voltage (I-
V) characteristic typical for the flux-creep regime, the
Bean model with anisotropic critical current density

j,(4), " and the vortex-glass state. 6 The coupling of an-
isotropy and nonlinearity of I(V) leads to a collective
electromagnetic instability of the macroscopically uni-
form mixed state and its transition into a cellular struc-
ture which can be considered as an array of magnetic
macrovortices in the system of the Abrikosov vortices.

The stability criterion of the uniform resistive state
with respect to small perturbations b'B(r, t) and BE(r,t)
can be obtained using the Maxwell equations BbB/Bt
= —curlbE, curlBB=pobj, where bE, =R,ttBjt3, R,p(j )
=BE,/Bjp is the tensor of the diff'erential resistivity, E,
and jtt are the components of the electric field and
current density, respectively, a,P=(x,y, z), the orthogo-
nal axes x,y, z are assumed to coincide with the symme-
try axes, and poH =B, which corresponds to 0» H, ~,

with H, ] the lower critical field. Let, for simplicity, B be
parallel to the z axis and let the current flow along the
x-y plane, then the elements R „R. , R~„and R,J van-
ish due to symmetry. Assuming bE, BH cxex (pkt +ik r)
and neglecting the self-field effects, one gets a set of
linear equations for the Fourier components: A, BB(k)
= —i[kxbE(k)], t'[kxSB(k)] =pobj(k), hE, (k) =R,p
xbjtt(k); the condition of their solvability yields the
spectrum of the electromagnetic perturbations A, (k).
After some algebra, one finds that A, (k) = —po 'f(n)k,
where n =k/k, k - tkt, and the function f obeys the fol-
lowing quadratic equation:

f —[(n, , +n, )R„+(n„+n, )R,, + (n„+n, )R :—n„n, , (R„y, +-Ry„)lf

+n. (R,R,, -

The solutions of Eq. (1) describe two modes with the in-
crements A, (k) depending on the orientation of k. Since
the instability arises if Rek. (k) &0, let us consider the
most "dangerous" mode with the minimum value of
Ref(n). As follows from Eq. (1), at R, &0 such a
mode corresponds to n: =0 and to the minimum of the
function

2Y=n, R„„+n„R,, n, n, , (R„+R,,„). — .

4R„„Ryy ( (R,) +R, ,).
tan2% = (R„y, +Ry,-)/(Ryy, —R„„).

(2)

(3)

Here Eq. (3) fixes the orthogonal principal axes n and m

R»yRy )+ [np R +n Ryy It tly(R»y+Ry»)]R z 0

t
The mode becomes unstable if Y(%') & 0 and 8Y/8+ =0,
where n, , =cos+, n, =sin%'. These conditions give the in-
stability criterion in the form
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of R,p which generally do not coincide with the symme-

try axes in anisotropic nonlinear media, where n depends
on the orientation of j as well. Equation (2) implies that
the principal value of R,p for the axis m is negative,
which indicates a 2D instability in the x-y plane (Fig. 1).

In anisotropic superconductors Eq. (2) can hold in a
wide region of j. In order to show that, let us present the
I-V characteristic as follows:

[Tl

\

k
k

F., = 6(j,@,8)p,

pj's,

(4)

where 4 and 8 are the angles between j and the principal
axes x and z of the resistivity tensor p,p, j= ~j~, and

6(j,@,8) is a nonlinear function of j, @, and 8 (see
below). Equation (4) takes into account the noncol-

linearity of E and j and the angular dependence of the
mean density of unpinned vortices nf(j, B) cc G contrib-
uting to E. Such an approach enables one to conclude
about the stability, regardless of the origin of the resitivi-

ty and anisotropy. From Eq. (4), one finds

R„=(G+jcos @86/8j —cos@sin@86/84) p, ,

R„,= (jcos@sin@86/8 j+cos 486/84) p„,

Rr„=(jcos@sin@86/8j —sin 486/84) p,

R,, =(G+jsin 486/8j+cos@sin@86/8@)p,

(s)

where p, and p, , are the principal values of p,p. The ex-
plicit criterion of the instability can be obtained by
means of Eqs. (2) and (5), if one assumes the scaling

G(j,4&) =G(j/jt(4)). Then Eq. (2) reduces to the
quadratic inequality for 8G/8j, which yields the instabil-

ity criterion in the form

s (j) & s, =g/2+ (g '/4+ g ) '~', (6)

gj], g)) 1,
jf] ='

J3g j~, g&&1. (9)

In the critical-state model one has 6 =
1
—j, (4&)/j,

jI, =j„and p ~ is the flux-flow resistivity tensor, whence

g(@)= 16p.~p)
, , (7)

[b(p„+p), )+ (p„—p, , )(bcos2@—sin2@)]' '

where s(j) =8lnG/81nj &0 and b(4) =81nji, (@)/84.
In the isotropic case (p, =p, b =0, g =~) the uniform
current is stable; otherwise Eq. (6) can hold if the anisot-

ropy and the nonlinearity of 1(V) are high enough.
Let us now consider the stability of the characteristic

resistive states, making use of Eq. (6). For instance, in

the conventional flux-creep model' the quantity p,~ is
the resistivity tensor in the thermally assisted flux-flow

(TAFF) regime, ' ' 6 = (j~/j) sinh(j% ~ ), and jt =j~,
where j~(@)=k&Tj, (C&)/U(@) and U(@) is an activa-
tion energy. Then s =(j%~)coth(j/j~) 1 and the in-

stability arises at j & jf] with

FIG. 1. The geometry of the instability. Inset: The depen-
dence of k on k: curve 1, s & s, ; curve 2, s & s, . The dashed
curve shows the change of A, (k) due to the suppression of the
short-wave instability (see text).

s =j,/(j —j,) and Eq. (6) reduces to j &jfp where

jfp=[( —, +1/g)'"+ —,
' ]j, (lo)

A similar situation occurs for the I-V characteristic
Vcx: exp[ —(jo/j) "],p & 0, predicted for the vortex-glass
model. ' Then s(j) =p(jo/j)", so at j 0 the insta-
bility criterion j & jg=jo(p/s, ) " holds for any anisot-

ropy, which indicates a transformation of the glassy state
and the change of V(I) at j& j~. For Gccj, m &0,
the stability criterion m & s, is weaker; nevertheless, for
extremely high anisotropy (s, 0) only the TAFF re-

gime (m =0) may prove to be stable. Thus, the insta-
bility arises at jf~(4) & j & jf2(4), if s, (4) &s„,
=max[s(j)]. At s, (C&) s„„one gets j~~ jf2, but for

g —1, Eqs. (8)-(10) yield jf2 —jf~ —j, In the latter
case the values jf2 and jf ~

can be found, regardless of the
crossover region between the flux-creep and flux-flow re-

gimes, which was assumed above when deriving Eqs.
(8)-(1o)."

Now we examine the mechanisms of the anisotropy in

more detail. The angular dependence of jk(@) is deter-
mined by the crystalline symmetry in the x-y plane,
which yields b(@) cc 8jk/8@=0 at 4=nn/2, n =0, 1,
2, . . . . This implies g(4) =~ for jllx or jlly, that is, the
uniform current flow is stable. However, for other orien-
tations of j the parameter g(@) is finite and the instabili-

ty arises if jj-~ (@)& j„, i.e., s, (@)&j,/j ~
-U/kg T For.

instance, at p, » p, , one finds from Eqs. (7) and (9)

J6(p, /p„) '"j)(e)
Jf]

~cos+ [sin@ —b (+)cos@]
~

' ' '

where the function b(N) can be expanded into a Fourier
series as b(4) =g„b„si (n2n@). We examine the insta-
bility region jf(N) j„taking into account, for simpli-

city, only the first harmonic b]. If b] & 7, there exist
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four stability sectors with the angular width B@-(p,, /
p„) ' (j~/j, ) &&1, and for b~ ) —,', additional sectors ap-
pear in the vicinity of 4=+ arccos(2b~) '~ (Fig. 2).
The case p,-»p, . is typical for high-T, oxides at B&c
with p, -O. 1p, for YBa2Cu30„p, —(10 -10 )p,
for Bi- and Tl-based compounds, and j,(0)/j, (rr/2) b-
—10-10 (Refs. 14-17) (x =c, y =a). Then Eq. (11)
yields jf ~

= (0.1-0.01)j, &&j„, which implies that at
p, »p, the instability can be caused by any weak non-
linearity of E(j) with s )0. The anisotropy in the a-b
plane can be due to the Cu-0 chains, twins, and grain
boundaries as well. Consider, for example, a stack of
planar crystalline defects in an isotropic superconductor,
provided that they act as additional pinning centers and
give a small contribution to the macroscopic resistivity.
Then p,- =p, but the macroscopic values of j~(@) and

j,(4) are anisotropic, which can lead to the instability,
since the parameter g(@)=4b (4) is finite. The sta-
bility diagram is similar to that shown in Fig. 2(a), with
84-4, and b(4, ) =6(j ~/j, ) &&1, i.e., @,.—(j~/j, )
—(kBT/U) . An analogous situation could also arise in

superconducting multilayered structures. '

Within the framework of the macroscopic approach
the instability has an explosive character, since at s & s,
[Ref(n) &0] the maximum increment k(k) = —po 'k-'

xf(n) corresponds to k ~. This implies that at large
k one should take account of nonlocal effects in Eq. (4)
caused by additional mechanisms suppressing the short-
wave instability at some k & k, . For example, such a
mechanism might be the diffusion of heat or nonequili-
brium quasiparticles accompanying the vortex motion.
The wavelength k, ' could also be limited by the sizes of
crystallographic grains. Indeed, for the above example
of planar defects, the macroscopic instability arises only
at kd«1, where d is a spacing between the defects. At
kd»1 the electromagnetic perturbations are mainly lo-
calized between the defects, where the superconducting
state is stable, whence k, -d '. In any case, the length
k, ' cannot be less than the vortex bundle size' (pin-
ning correlation length' ) which is a physical scale on
which the vortex structure is always stable. All these

(a)

FIG. 2. The diagram of stability at (a) b~ & —,
'

attd (b)
b 1 ) 2 . The hatched sectors correspond to the directions for
which the uniform current flow is stable.

mechanisms result in a maximum of X(k) at some
k =k„,-k, (Fig. 1).

Let us now outline the structure of the resistive state
above the instability threshold s & s„where one of the
principal values of the magnetic diffusivity tensor D,~
~R,p' becomes negative. This leads to the growth of
inhomogeneous magnetic structure and a stratification of
the current into domains with different values of j by
analogy to the Gunn effect in semiconductors or the
spinodal decomposition of solids. ' The instability in-
duces transverse components to the initial j (see Fig. 1),
resulting in the appearance of a 2D static perturbation
Bj(r) of the form pl, bji, cos(k r+ yi, ), 0 & k 5 k„with
the amplitudes bj l, and phases yk determined by the non-

linearity of I(V) and the form of X(k). Such a struc-
ture is generally nonperiodic, and its characteristic spa-
tial scale is of the order of k, since the main contribu-
tion to Bj(r) comes from the harmonics bjk with k=k
corresponding to the maximum increment of A, (k) (see,
e.g. , Ref. 21). When a characteristic amplitude j, of
Bj(r) becomes of the order of the mean transport current
density j„partial closure of the current lines arises,
which results in the creation of anisotropic current loops
of size —k '. Such a state can be considered as a
macrovortex structure, where j, plays the role of a
characteristic current density circulating inside the
macrovortices. The value j, may be estimated, assuming
the sample is separated into domains with j jf~ and

j jf2, their concentrations depending on j, . This re-
sults in a suppression of the instability inside the
domains, where s & s„' hence j,—jfp —jf~.

The amplitude j, essentially depends on @. Indeed, if
j, is nearly parallel to one of the boundaries of the
hatched sectors in Fig. 2, the instability leads to weak
modulations of j(r) only, since s s, and j, -jf2(@)
—jf~(@)&&j,. However, an increase of the misalign-
ment between j, and one of the principal axes x or y re-
sults in the growth of j,(4) and the appearance of the
macrovortex structure in the case j, j„which can easi-
ly hold at g-l, where j, -jf~(4) &&j, and j, -jf2(4 )
—jf)(c ) —j,.

Let us discuss possible manifestations of this instabili-
ty. As mentioned above, in spite of the macroscopic ori-
gin of the instability, the structure of the nonuniform
state at s &s, is determined by both nonlinear elec-
tromagnetic effects and details of pinning or crystalline
lattice. For instance, the angular dependence of the in-

tergrain j,(4) may turn the crystallographic grains into
magnetic macrovortices with high shielding current den-
sities of the order of an intragrain j,. This transition
occurs at j,-jf~, where jf ~

&&j, in the case of high an-
isotropy. The instability may also be caused by a high
crystalline anisotropy itself without invoking defects,
especially in Bi- and Tl-based compounds, where the
sizes of macrovortices could be determined by intrinsic
pinning mechanisms. A similar magnetic granularity
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and a considerable diff'erence between the transport (j„)
and the shielding (j,„) critical current densities in non-
ceramic high-T, oxides were discussed before. No-
tice that the instability can be suppressed upon decreas-
ing the anisotropy by material inhomogeneities or, say,
by the irradiation of the sample resulting in a partial
amorphization of the crystalline lattice. This might clar-
ify the fact that the diA'erence between j„and j„was
observed to be more pronounced for single crystals than
for more inhomogeneous oriented-grain materials. The
appearance of the macrovortex structure can be con-
sidered as a dissipative phase transition from the laminar
current flow into a peculiar "turbulent" regime, which
could manifest itself in peaks of the magnetic susceptibil-
ity, the electric noise power, and the mechanical damp-
ing in vibrating-reed experiments, or as a nonuniform
distribution of the magnetic flux in magneto-optical ex-
periments. Such a transition may also lead to anoma-
lous dependences of kinetic coefficients on T and B and
novel mechanisms of nonlinearity of V(I).

Finally, the anisotropy can restrict possible forms of
the I-V characteristics for which uniform current flow is
stable. If the anisotropy and/or the nonlinearity of I(V)
is high enough, macroscopic modulations of the magneti-
zation arise, regardless of the structure and dynamics of
the mixed state. Similar instabilities could also arise in

other nonlinear anisotropic systems.
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