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Existence of a Photonic Gap in Periodic Dielectric Structures
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Using a plane-wave expansion method, we have solved Maxwell’s equations for the propagation of
electromagnetic waves in a periodic lattice of dielectric spheres (dielectric constant €,) in a uniform
dielectric background (e,). Contrary to experiment, we find that fcc dielectric structures do not have a
“photonic band gap” that extends throughout the Brillouin zone. However, we have determined that
dielectric spheres arranged in the diamond structure do possess a full photonic band gap. This gap exists

for refractive-index contrasts as low as 2.

PACS numbers: 71.25.Cx, 41.10.Hv, 84.90.+a

Recently, there has been growing interest in studies of
the propagation of electromagnetic (EM) waves in disor-
dered and/or periodic dielectric structures.! This in-
terest is partly due to the possibility of the observation of
Anderson localization? of EM waves in disordered di-
electric structures~’ and also to the possible existence of
photonic band gaps in 3D periodic dielectric struc-
tures.®!? In analogy to the case of electron waves prop-
agating in a crystal, light waves traveling in periodic
structures will be described in terms of photonic bands
with the possibility of the existence of frequency gaps
where the propagation of EM waves is forbidden. In the
original proposal for photonic band structure,'® it was
suggested that the inhibition of spontaneous emission in
such gaps can be utilized to substantially enhance the
performance of semiconductor lasers and other quantum
electronic devices. It has also been speculated'* that the
absence of vacuum fluctuations in the photonic gap will
lead to new physical phenomena.

For the case of EM-wave localization, there exists as
yet3~7 no proof of the existence of classical wave locali-
zation in a system of disordered dielectric structures.
Drake and Genack'® have recently reported measure-
ments of the optical diffusion coefficient’ in a system of
close-packed titania spheres, strongly suggesting that
the critical regime very close to localization has been
reached. In addition, John® has proposed that optical lo-
calization for EM waves near a photonic band gap might
be achieved by weak disordering of a periodic arrange-
ment of spheres. These recent developments suggest that
a clear experimental demonstration of optical localiza-
tion is imminent.

It is therefore very important to obtain a structure
with a frequency gap where the propagation of EM
waves is forbidden for all wave vectors. Investigations in
this field are only just beginning. In the first experiment
on photonic band structure, Yablonovitch and Gmitter''
reported a photonic gap in a face-centered-cubic (fcc)
dielectric structure. On the theoretical side, studies of
the propagation of EM waves have so far been based
upon the scalar-wave approximation®%!2!3 in which the

vector nature of the EM field is ignored. This approxi-
mation gives qualitatively incorrect results for the ex-
istence of photonic gaps (see discussion below). Results
for the vector EM field have only been obtained for a
system of random dielectric spheres within the coherent
potential approximation.~’

In this paper we report calculations for the photonic
band structure of periodic arrangements of dielectric
spheres in the fcc and the diamond structures. Expand-
ing the EM fields with a plane-wave basis set, we solve
Maxwell’s equation exactly, taking the vector nature of
the EM field fully into account. Comparison of our cal-
culational results of the fcc structure with experiment in-
dicates that while the experimental data and theory
agree very well over most of the Brillouin zone, there are
two symmetry points (W and U) where the experiment
indicates a gap while calculations show that propagating
modes exist. We believe the fcc structure exhibits a
pseudogap rather than a full photonic band gap; that is,
there is a region where a band gap exists over most, but
not all, of the Brillouin zone, resulting in a region of low
density of states rather than a forbidden frequency gap.
On the other hand, we found that the diamond dielectric
structure does possess a full photonic band gap. Details
of the calculations and discussion of the results will be
presented in the remainder of the paper.

In a periodic structure where the dielectric constant
e(r) is position dependent, Maxwell’s equations for EM
waves can be written as

VxE=i(w/c)H, VXH=—i(w/c)e(r)E, 1)
which can be further simplified to
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Since e(r) is periodic, we can use Bloch’s theorem to ex-
pand the H field in plane waves,
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where k is a wave vector in the Brillouin zone of the lat-
tice, G is a reciprocal-lattice vector, and €;,€; are unit
vectors perpendicular to k+ G because of the transverse
nature of H (i.e., V- H=0). Substituting into Eq. (2) we
obtain the following matrix equations:
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and ¢g.g'=¢(G —G') is the Fourier transform of e(r).

Equation (4) can be solved using standard matrix-
diagonalization methods.'® We note that in our method
the structure of the dielectric crystal enters the calcula-
tion only through the position-dependent dielectric func-
tion e(r) which is evaluated on a fine grid in the real-
space unit cell and Fourier transformed into reciprocal
space. Thus our method is able to treat exactly any
periodic arrangements of objects with arbitrary shapes
and filling ratios. We find that the results for the lowest
ten bands converge fairly rapidly. Results reported in
this paper were obtained with matrix sizes of the order of
750. Frequencies are converged to better than 1%.

We performed numerical calculations for the fcc lat-
tices for cases of both dielectric spheres and air spheres.
Although an extensive search was made with various
refractive-index contrasts and filling ratios (f), none of
the fcc structures we investigated exhibit a complete
photonic band gap. On the whole, there is good, though
not perfect, agreement with the available experimental
data.'' For example, an investigation of the dependence
of the band gaps at the X point and L point as a function
of filling ratio (f) for the case of air spheres in a n=3.5
dielectric gives the right trends for the variation of the L
and X gaps with filling ratio, with the X gap becoming
zero at [ =67%.

Experimentally,'' the best-performing structure was a
fce dielectric lattice of air spheres in a material with re-
fractive index of 3.5 at a filling ratio of 14% dielectric
material and 86% air. In this configuration, the filling
ratio of the spherical air atoms is higher than the close-
packing density (74% for the fcc lattice) and the spheres
overlap slightly. However, this does not cause any prob-
lem in our calculational scheme, since e(r) is represented
numerically on a fine grid in real space. (The filling ra-
tio of the structure is obtained from numerical integra-
tion over the real-space grid.) We plot in Fig. 1 our cal-
culated photon bands for this structure along important
symmetry lines in the Brillouin zone (BZ). Our results
are similar to the experimental reported band structure
for most of the wave vectors. However, there are serious
disagreements near the symmetry points W and U: At
the W point we found the second and third bands to be
degenerate, independent of refractive-index contrasts
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FIG. 1. Calculated photonic band structure along important
symmetry lines in the Brillouin zone for a fcc dielectric struc-
ture composing of air spheres in a dielectric background of re-
fractive index 3.5. The filling ratio is 86% air and 14% dielec-
tric material. Along X-U-L and X-W-K, the dotted and solid
lines indicate bands which couple only to s and p polarized
light, respectively, in the experiment of Ref. 11.

and filling ratios for a fcc lattice of spheres. There is
also a crossing of the second and third band along the
symmetry line U-X near U. These two features of the
band structures prevent a gap from opening up in the fcc
structure.

In the experiment,'' the photonic band structure was
probed by measuring the transmission of EM waves in-
cident on the (100) face of the “crystal.” These waves
are either s polarized (E parallel to the surface) or p po-
larized (E in the incident plane). For wave vectors in
the X-U-L and the X-W-K planes, reflection symmetry of
the crystal causes a separation of the photon bands into
one group which interacts only with s-polarized waves
(indicated in Fig. 1 by dotted lines) and another group
which interacts only with p-polarized waves (solid lines
in Fig. 1). Along the X-W line, the photonic gaps for s
polarization and p polarization are identical at X but as
the wave vector moves towards W, the s gap rises in fre-
quency until at W the bottom of the s gap coincides with
the top of the p gap to give a degenerate state at W.
Thus a gap will show up in experiments for s and p po-
larization individually. In the experiment, as the fre-
quency of the EM wave increases, the transmission sig-
nal drops very sharply at the beginning of the gap so that
the bottom of the gap is very well determined. At the W
point, there is good agreement between theory and ex-
periment for the frequencies of the bottoms of the s gap
and the p gap.'” However, the experiment seems to
overestimate the frequency of the top of the gap com-
pared with our calculations. Apparently, due to the
finite crystal size, the experiment had inadequate resolu-
tion to observe the degeneracy of the bottom of the s gap
and the top of the p gap at W.!’

Our analysis indicates that a photonic gap is inhibited
in the simple fcc structure because of a symmetry-in-
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FIG. 2. Calculated photonic band structure for a diamond
dielectric structure consisting of dielectric spheres of refractive
index 3.6 in an air background. The filling ratio of the dielec-
tric material is 34%. The frequency is given in units of c¢/a,
where a is the cubic lattice constant of the diamond lattice.

duced degeneracy at the W point. We, therefore, seek to
change this degeneracy by changing the symmetry of the
lattice. However, we would still like to keep the fcc Bril-
louin zone since it is most spherelike and favorable for
the overlapping of band gaps at various Brillouin-zone-
boundary wave vectors. The next structure we tried is
the diamond lattice. We show in Fig. 2 an example for
the case of a diamond lattice of dielectric spheres with a
refractive index of 3.6 and a filling ratio of 34%, i.e.,
when the spheres are just touching each other. We find
that there exists a full photonic band gap in which EM
waves are forbidden to propagate in any direction, in-
cluding W and U.

We have made a systematic examination of the pho-
tonic band structures for dielectric spheres and air
spheres on a diamond lattice as a function of refractive
index contrasts and filling ratios. In all the cases we ex-
amined, the lattice-constant a was kept constant and the
radius r; of the spheres was varied to change the filling
fraction f. We found that when we fixed the refractive
index at 3.6, photonic band gaps exist over a wide region
of filling ratios for both dielectric spheres and air
spheres. We plot in Fig. 3(a) the calculated size of the
forbidden gap normalized to the midgap frequency for
both cases. For dielectric spheres on a diamond lattice a
maximum gap to midgap ratio (Aw/wg) of 15.7% is
found at f=37%, whereas for the case of air spheres,
Aw/w, can reach 28.8% at f=81%.

We notice that in the diamond structure, all the bands
along the symmetry line from W to X are required to
have twofold degeneracy. This favors the opening up of
a gap between the second and third bands which is what
is required for a photonic gap. We found that a band
gap can be formed in the diamond structure at relatively
low dielectric contrasts. We plot in Fig. 3(b) Aw/w, as a
function of refractive-index contrast for a fixed dielectric
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FIG. 3. (a) Gap to midgap frequency ratio (Aw/w,) as a
function of filling ratio for the case of dielectric spheres in air
and air spheres in dielectric. The refractive index of the ma-
terial is chosen to be 3.6. (b) Aw/w, as a function of refractive
index contrast for a fixed dielectric structure. The dotted line
is for the case of air spheres in dielectric with a filling ratio of
81%, and the solid line is for dielectric spheres in air with a
filling ratio of 34%.

structure. We keep f=34% for the case of dielectric
spheres in air and f=81% for air spheres in a dielectric
background. For both cases a photonic gap exists when
the refractive-index contrast exceeds 2. Such contrasts
are easily accessible for visible light with existing dielec-
tric materials. We observe that for increasing contrasts
Aw/wg saturates to a value of 21% for the case of solid
spheres and to a very large value of 46% for the case of
air spheres.

In a number of previous theoretical investigations, it
was asserted that solution of the Maxwell equations
within the scalar-wave approximation can serve as a
qualitative guide in determining the photonic band struc-
ture. We see in the present results that this is not true.
In the fcc structure the scalar-wave approximation pre-
dicts the existence of a photonic gap whereas no gap ex-
ists in the exact solution. For the diamond lattice where
the exact solution indicates a gap, the double degeneracy
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of the states along W to X prohibits the opening of a gap
in the scalar approximation. Thus important symmetry
information is lost when the vector nature of the EM
field is neglected.

In conclusion, we have solved the problem of the prop-
agation of physical EM waves in a three-dimensional
periodic arrangement of dielectric structures. Our calcu-
lational scheme provides a very efficient way to obtain
the crystal structure and the optimum parameters (n,/n,
and f) for the maximum gap. We found that an ar-
rangement of dielectric spheres in a diamond structure
with easily obtainable dielectric constants clearly pos-
sesses a full photonic gap which can be verified in future
experimental measurements. The traditional scalar-
wave approximation is found to be inadequate in describ-
ing important aspects of the photonic band problem.
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