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Nonquasilinear DiN'usion Far from the Chaotic Threshold
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The diAusion coefficient for particles in a field of randomly phased waves was calculated numerically.
Spectra broad in wave number and broad in frequency exhibit identical behavior for the diff'usion

coefficient as a function of the overlap parameter a The diffusion coefficient exceeds the quasilinear
value by a factor of about 2.5 at e near 18. Diff'erences greater than 25% between the two values exist
far above the chaotic threshold (a=60). A mapping-based model with a small number of random

phases qualitatively reproduces the results of the simulations.

PACS numbers: 52.35.Ra, 03.20.+i, 52.25.Dg

The theory of diffusion ' of particles in a turbulent
field has attracted much attention due to its relevance to
weak plasma turbulence and anomalous transport. Ear-
ly theories relied on the randomness of the wave phases,
thus indicating that diffusion is connected with extrinsic
randomness. But more recently it was realized that
diffusion can be an intrinsic property of a deterministic
system, whose presence depends on the parameters (e.g. ,
Chirikov's overlap parameter) describing the dynamics.
For example, the diffusion coefficient for the standard
map, a dynamical system of regularly phased waves,
was found to rise from zero at the threshold for global
chaos. The ratio of the diffusion coefficient to the quasi-

linear value then oscillates as the kick amplitude is in-

creased.
The enhancements of the diffusion coefficient in the

standard map are often connected with accelerator
modes, stable regions of phase space where the momen-
tum changes linearly with time. Such stable regions are
not likely to exist for the randomly phased field.
(Indeed, such regions are not observed in our numerical
calculations. ) Accordingly, the diffusion coefficient
might be expected to rise monotonically from zero to the
quasilinear value with increasing force amplitude. This
is expected from Dupree's turbulence theory, which in-

dicates that the intrinsic chaos cuts off the correlation
function, thereby decreasing the integral giving the
diffusion coefficient. Moreover, monotonic behavior of
the diffusion coefficient was apparently observed in previ-
ous numerical simulations.

Surprisingly, we find that the diffusion coefficient
D/D0L relative to its quasilinear value rises to a max-
imum of about 2.3 at an overlap parameter of a=18 and
then decays to its asymptotic value. Moreover, sig-
nificant differences (of the order of 25%) remain far
above the chaos threshold (by a factor of 60). Assuming
the interaction is local in velocity (see below), we show

that these results are quite general. They are valid for
spectra with large frequency spread or large wave-
number spread. We are able to reproduce the diffusion
coefficient qualitatively with the correlation-function for-
malism modified to allow random phases.

Our results are connected to those of recent studies in

the regime of "turbulent trapping.
" Here the field can

be decomposed into a sum of wave packets with en-
velopes barely overlapping spatially and resonance
widths barely overlapping in velocity. In this regime a
diffusion-coefficient enhancement by a factor of approxi-
mately 2 has been found. We study a regime similar in

that our resonance widths are barely overlapping, but we
have plane waves. Furthermore, our case is not self-
consistent and, thus, may not have certain self-con-
sistency-induced wave correlations. However, our case
may be viewed as the instantaneous state of a slow, self-
consistent evolution with randomly phased waves.

The Hamiltonian for a particle moving in a spectrum
of randomly phased waves with varying wave numbers
and frequencies is

N

H = —, p '+ e g b„cos (k„q —co„t +y„),
n 0

where the p„'s are chosen randomly. With slowly vary-
ing wave parameters, the resonant velocities U~„=co„/k„
are spaced by Av, „=k„'8ro„/Bn —(ro„/k„)8k„/Bn near
the nth wave. A modified overlap criterion, that the
resonance widths of the primary islands be 2/z of the
resonant-velocity separations, predicts the disappearance
of the last Kolmogorov-Arnol'd-Moser curves of the
original topology near the nth resonance at the ampli-
tude value, cb„-hv,'„/4z .

The linear-orbit approximation gives the diffusion
coefficient as a sum of 8' functions at the resonant veloci-
ties. Smoothing over these 8 functions gives the quasilin-
ear diffusion coefficient DqL =no k„b„/2dt. ~„, which is
valid in the limit of large e. Our goal is to determine
how the true diffusion coefficient D in this system differs
from the quasilinear value DgL for intermediate values
of e: above the chaotic threshold but before the quasilin-
ear limit is reached.

We assume that the wave-particle interaction obeys
locality. By locality we mean that D depends on only
those parameters, k„, b„, co„, describing the waves nearly
resonant with the considered velocity. To use locality we
first make a Galilean transformation of velocity ~o„Jk„,
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Second, we assume that the b„'s and k„'s are sufficiently
slowly varying that we may set them to bn, and k„,.
Similarly, we make the replacement v~„, —v~„

(no —n)hi. „,. Next, we rescale the system so that k„,
and hi, „, become unity, and we define b„, so that the
modified overlap criterion mentioned above occurs at
e = 1. Finally, we reindex to put the index of the most
nearly resonant wave at zero. Thus, locality allows us to
replace the Hamiltonian (1) by

N2

H(p, q, t) = —,p'+, g cos(q mt+—y ),
4Z m~ —N

(2)

in which Ni =no and Nq N no—are large. For infinite

N1 and N2, this Hamiltonian would be that of the stan-
dard map, were all the phases zero.

The diffusion coefficient for this system was measured
by initiating an ensemble of 400 particles uniform in po-
sition with unique initial velocity and integrating with a
leapfrog integrator using a time step one-tenth of the
shortest wave period. (After making convergence tests,
we chose N~ =N2 300.) Half d(hp )/2dt of the large t-
slope of the spread of this ensemble gives the diffusion
coefficient. Such measurements must be made at an in-
termediate time, such that the ensemble is chaotically
mixed, yet the particles have not encountered the veloci-
ty limits of the chaotic region.

The squares in Fig. 1 are the measured ratio of the
diffusion coefficient to the quasilinear value. This ratio is

seen to have a maximum of about 2.3 near a=18.
Diffusion faster than quasilinear was observed in the
standard map, " but there it was related to accelerator

to the frame of the most nearly resonant wave. This
gives the Hamiltonian

H = ,' p '—+eg b„cos[k„[q—(v,„,—I &, )t] +P, } .

modes, whose existence relies on the special set of phases
(all zero) for the standard map. In the random-phase
case coherent structures are not expected (nor observed
in our simulations), yet the diffusion coefficient is

significantly above quasilinear. Additionally, for the
standard map the ratio D/DgL is oscillatory with local
minima well below unity. For the random-phase case
this ratio never falls below the unity after rising above it.

We tested the independence of our results on the ini-

tial conditions and the phase choice. We selected the ini-

tial coordinates evenly spaced in the interval [0,2z] and
also by a random-number generator with various seeds.
We selected various values for the initial velocity. We
used different seeds for the random generation of the
wave phases. To within statistical noise, the diffusion
coefficient was unaffected.

To check locality, we studied a Hamiltonian with a
broad-wave-number spectrum. To facilitate the mea-
surements, we chose parameters to have uniform overlap
and quasilinear diffusion coefficient. This implies k„
=(ko ' ' Bn) '—' and b, (3NB/4K)'k ' ' with
B (ko ' —

ktv
t )/N. We chose ko=2 and kjv=-,',

with N =200. For each value of s, 5000 particles were
integrated. The results are shown by the circles in Fig.
1. The error bars were determined from the variations
among subsets of the full ensemble. (The error bars for
the squares should be roughly 3.5 times larger as that
ensemble was smaller by a factor of 12.) That the two

systems give the same result verifies locality. The
diffusion coefficient depends on neither the type of spec-
trum nor its large-scale properties.

To analytically compute the diffusion coefficient we

consider the Hamiltonian

M —
I

HM(p, q, t) = + g a cos(q —y )
2 2Z m~p

x 82,(t —2am/M ), (3)

2.5

2.0-

1.0-

0.5- r

a successive application of M phase-shifted standard
maps of varying amplitude. In Eq. (3) is b2„, the
periodic 8 function of period 2n. The mapping for this
Hamiltonian is

p„=p„ i+ (e/2n)a. i sin(q„ i
—y. )

and q„q„ i+ (2tr/M)p„, where a„+M =a„ itrg+M = Itrn,

and q„and p„are the values of the coordinates just after
the nth kick. The 8 functions cause the Hamiltonian (3)
to have an infinite set of resonances. Thus, it cannot be
made to correspond exactly to the Hamiltonian (2).
However, for the choice

0.0 I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I
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1
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—
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FIG. 1. Ratio of the diAusion coefficient to the quasilinear
value shown as squares for the Hamiltonian (2) and as circles
for the broad-wave-number case (1).

the resonances of the Hamiltonian (3) all have the same
amplitude, 1/4n, as those of the Hamiltonian (2). In
addition, the phases P„ for n'~ n ~ n'+M —1 are dupli-
cated. Thus, with locality and sufficiently large M the

3133



VOLUME 65, NUMBER 25 PHYSICAL REVIEW LETTERS 17 DECEMBER 1990

D/DgL —I= g 6„,
n I

where

(5)

two Hamiltonians (2) and (3) have the same diffusion
coefficient.

The diff'usion coefficient for the Hamiltonian (3) is ob-
tained from a modified characteristic-function formal-
ism. ' The diA'usion coefficient obeys

2.5

2.0-

0'
Q

1.5a

1.0

M —
I

Me j-0 j,n 0.5-

is the normalized average over the M steps of the map
(3) of the phase-space-averaged impulse correlation
function C, „=—((p~+I —pj)(pj+„+I —pj+„)). Ergodicity
implies that C~ „ is periodic in the index j with period M.
The first correction hI vanishes identically. For the
two-step mapping, the second correction is

A2 = —2cos (Ap/2) J2(csin(Ap/2)/2)

—2 sin (Ap/2) Ji(ecos(hp/2)/2), (7)

where hp—= p~ pp is the phase diff'erence of the two reso-
nances.

The random-phase diffusion coefficient is obtained by
invoking the statistical hypothesis that in the limit of a
large number of waves, the result for almost any choice
of phases is very close to the result averaged over all the
phases. This allows us to average Eq. (5) over the
phases of the system. For example, averaging the second
correction (7) of the two-step mapping yields (h2)
=J (e/4)/Ir —2J2(e/4) Jp(e/4)/z.

Figure 2 shows the two-step mapping results for the
sum of the phase-averaged corrections containing at
most two Bessel functions. These include correlations
through (h3) and the principal terms of (h4). These re-
sults show that the two-step mapping with a single-phase
averaging is able to reproduce qualitatively the depen-
dence of the diffusion coefficient on e. Like the numeri-
cal results, the analytic diff'usion coefficient has a large
peak at moderate e, and it never falls below the quasilin-
ear value after rising above it. Unfortunately, the mag-
nitude of the analytically calculated peak is too small by
about 20%, and its location is at a value of ~ too small by
40%.

The qualitative correctness of the two-step mapping
calculation through (A4) indicates that correlations must
be calculated through two periods (ht =4Ir) of the Ham-
iltonian (2) to obtain the diff'usion enhancement at
c= 20, where it is greatest. In physical units, this corre-
sponds to a time 4Ir/khv, since we had chosen the wave
number k and the phase-velocity separation hv to be uni-

ty in the Hamiltonian (2). Thus, for e=20 the non-
linear correlation time r„, is of the order of a bounce
Period, r„,= 10/k(eb„) ' =10/oie„, where cue„ is the
bounce frequency for the nth mode. (This time is much
longer than the linear-orbit correlation time, which is

0.0
0 10

I ~ I ~ I ~ I ~ I ~ I ~ I s I ~ I

20 30 40 50 60 70 80 90 100
C

FIG. 2. Ratio of the diA'usion coe%cient to the quasilinear
value shown as squares for the Hamiltonian (2) and as a solid
curve for the randomly phased, two-step mapping (3).

proportional to the inverse of the spectral width and,
thus, vanishes in the limit of infinite spectral width. )
Unfortunately, we cannot generalize this argument to ar-
bitrary e to say whether the nonlinear correlation time
scales with e as the individual bounce time (cce '~ ),
the time to diffuse across a fixed number of resonances
(-I/Da:e ), or the resonance broadening time [-1/
(k D) '~ Ix: e ~ ], as all of these times are of the same
order at e= 20.

Correlations over two periods in the three-step map-

ping involve terms up to h6, which we have not calculat-
ed. Keeping the corrections only through h4 shows a
better fit to the location of the maximum in D/DoL (it is
shifted to 15), but produces a maximum of only 1.5.
These results and those of the two-step mapping indicate
that one need average over only very few phases (2-3) in

order to see the behavior of a randomly phased system.
Lack of sufficient measuring time appears to have

prevented the observation of nonquasilinear diffusion in

previous work. ' Linearized-orbit theory dictates
quasilinear spreading for velocities away from the edges
of the phase-velocity spectrum and for times between the
spectral correlation time and the time at which orbit
linearity (constant p) is no longer valid. Our numerical
results show that to observe the deviations from quasilin-
ear theory for e= 20, the initial distribution must be fol-
lowed until it has spread over roughly the nearest four
resonances. Hence, it could have been that the simula-
tion time of Ref. 6 was too short. In Ref. 10, Eq. (34), it
is explicitly stated that the early-time diAusion coeffi-
cient is measured. Interestingly, the diffusion was ob-
served to deviate from quasilinear in Ref. 10 [cf. Fig.
5(b)) at the time the distribution was spread over two
resonances. However, in this work there were only thir-
teen resonances, and the diA'usion coefficient varied by
an order of magnitude over the corresponding range of
velocities, so the deviation was attributed to inhomo-
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geneity and boundary eAects.
In conclusion, we have shown that the diA'usion

coefficient for a particle moving in a system of randomly

phased waves is a function of only the local overlap pa-
rameter. This diA'usion coefficient may exceed the quasi-
linear value by a factor of 2 in a regime reasonably far
(by a factor of 20) from the chaotic threshold. Our
mapping-based analysis indicates that the randomness of
the phases can be modeled with only a very small num-

ber of random phases.
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