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Adiabatic hyperspherical potential curves are calculated for very highly excited states of H ™ converg-
ing to H(n =< 12). These potential curves reveal surprisingly weak channel interactions, manifested as
extremely diabatic multiple curve crossings. We demonstrate that only resonances associated with the
lowest “+” diabatic channel within each n manifold are observed in the recent experiments at Los
Alamos (Harris et al.). A simple Rydberg-dipole formula gives the positions of all dominant resonances,
permitting extrapolation to arbitrarily high quantum numbers.

PACS numbers: 32.80.Fb

Our understanding of electron-electron correlation
effects in doubly excited states has advanced on several
fronts since the first observations of doubly excited lines
in the photoionization spectrum of He in the early
1960’s.'"® Among these theoretical methods, Macek’s®
adiabatic hyperspherical coordinate treatment has ac-
counted for many of the systematic properties of doubly
excited states, while providing qualitative insight into the
delicate balance between the electron-nucleus attraction
and the electron-electron repulsion in doubly excited lev-
els. This representation exploits the natural symmetry of
any two-electron atom by introducing a collective coordi-
nate system: a hyperradius R=[r7+r31'"2 giving a
measure of the “size” of the complex, and a hyperangle
a=arctan(r,/r,), defining the degree of radial correla-
tion between two “valence’ electrons. In Macek’s adia-
batic approach,®® the two-electron Hamiltonian is diag-
onalized parametrically in R,

U(R;0)®,(R, Q) =U,(R)®,(R,0), (1)

and the eigenvalues serve as potential-energy channels
for motion of the electron pair. All doubly excited reso-
nant states in any one particular hyperspherical channel
will exhibit the same correlation signature.’
Approximate correlation quantum numbers (the so
called 4=“+" and “—,” and KT)?’ have been used to
classify the hyperspherical channels and establish the
dominance of the + channels over the — channels. The
purpose of this paper is however to report on a new selec-
tion rule in the photodetachment process of H ~, estab-
lishing the dominance of a few selected hyperspherical
channels. To this end, we follow the recommendation of
Lin,? that to solve Eq. (1), the combination of a hyper-
spherical harmonic basis set and an independent-electron
basis set efficiently represents both the small and large
regions in R. Using such a basis set, Koyama, Takafuji,
and Matsuzawa'® obtained an adiabatic description of

high-lying doubly excited 'P° states up to the n=7
threshold. We also employ a similar technique to obtain
accurate potential curves for the 'P° symmetry of H™
up to H(n=12). The LS-coupled hyperspherical har-
monics’ involve Jacobi polynomials in cos(2a) and stan-
dard coupled spherical harmonics. The independent-
electron basis functions are instead composed of properly
symmetrized hydrogenic orbitals. Equation (1) is thus
converted to a generalized eigenvalue equation at each
value of R, Uc, =U,(R)Oc,, in which O is the full over-
lap matrix. This composite basis displays linear depen-
dence because of its overcompleteness, severely hamper-
ing the diagonalization procedure and producing unphys-
ical eigenvalues. To overcome this problem, the Hamil-
tonian matrix U is transformed into the representation in
which O is diagonal, while discarding all the overlap ei-
genvalues corresponding to null solutions of the eigensys-
tem. The total basis set is thus orthogonalized at each
R, in a stable and automatic fashion. As a rule of
thumb, the total number of basis functions in the new
transformed representation increases by unity for every
10 a.u. increase in R.

Figure 1(a) shows the adiabatic potential-energy
curves generated for the 'P° symmetry of H ™ accessed
by the photodetachment experiments at LAMPF.!' For
the present calculations, which give these curves up to
the n=12 hydrogenic threshold, we have used a primi-
tive basis set of 49 hyperspherical harmonics and 123
two-electron orbitals. Since the density of states grows
dramatically at high energies and the curves belonging to
different manifolds begin to exhibit sharp avoided cross-
ings, we show these potential curves as R-dependent
effective quantum numbers v, (R)=[—2U,(R)]1 ™' vs
VR. We stress that these potential curves have been
plotted adiabatically, whereby the closeness of avoided
crossings truly reflects weak channel interactions, or ap-
proximate symmetry. (Reference 3 gives a molecular in-
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FIG. 1. (a) Adiabatic potential curves for 'P° H ™ shown as
effective quantum numbers vs VR. One should look edgewise
along the Wannier ridge line, viw =18 ~'*JV/R, to see the lowest
+ channels. In (b), only the lowest + channels within each n
manifold are plotted along with the level positions in each po-
tential. The Wannier ridge as an imaginary straight line
through the avoided crossings is clearly evident in this figure.
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terpretation of such diabaticity.) In the asymptotic re-
gion, these diabatic channels converge to the dipole po-
tential —a,x7/2R’ produced by the mixing of degen-
erate angular momentum states of H(n/) due to the elec-
tric field of the outer electron. (Here the channel index
u is equivalently defined as nKT.?) Equation (38) of
Ref. 2 gives an approximate expression for these channel
dipole moments —a,xr, eigenvalues of the Gailitis-
Damburg operator;'? e.g., for the lowest + channel in
each n manifold, a, ,—»1=3n%2—23n/3+2/3n+1 which
differs from the exact values'3 by less than 1%. Autoion-
izing levels lying in each diabatic channel are obtained
by matching the inner radial solution to dipole-field
functions in the asymptotic region with the aid of single-
channel quantum-defect theory. '*

In Fig. 1(b), we show only the lowest + diabatic
channel in each » manifold having K=n—2, T=1.
Also shown with horizontal marks are the positions of
resonances in each channel. We stress that the great
complexity of Fig. 1(a) will prove irrelevant for the pro-
cess at hand, as almost all the physics of H™ photode-
tachment is contained in the few diabatic channels
shown in Fig. 1(b) (in addition to the n=1 curve not
shown here).

We also fitted positions of the first resonance in the
lowest + channel for n=3,4,5 (K=n—2, T=1) by a
two-electron Rydberg formula'> E(n,n)=—(z—8§)?/
(n—pu)?, obtaining values for the screening parameter
0=0.1587 and quantum defect u =—0.3770. Combin-
ing this Rydberg formula with the dipole scaling law'%'*
relating successive levels within a given potential curve,
we arrive at a generalized two-electron formula which
describes all the resonance positions observed experimen-
tally (in a.u.),

E(,,,,,,)=_J_2_exp :ﬂ‘m_—n_)]
2n QAn.n—2.1
(1—0)? 1
Mo , 2
x[(n—y)z 2nzl @

where ay n—21=(apn—21— 5)"2, m=n describes the
Wannier states,'® and m=n+1, n+2,. .. give the dipole
states. The doubly excited states calculated using Eq.
(2) are compared in Fig. 2 with the experimental reso-
nance positions. A similar fit to the same resonance po-
sitions calculated by Ref. 4 gives 6=0.1629 and
n=—0.3423. The two fits are indistinguishable on the
scale of Fig. 2. The parameters from the second fit are
close to those cited in Ref. 11.

The most striking feature in Fig. 2 is that all the ex-
perimental Feshbach resonances correspond very closely
only to those doubly excited states lying in the + chan-
nel for which the quantum number K is maximum
within a given n manifold, i.e., K =n —2, providing con-
crete evidence for the dominance of the lowest + chan-
nel in each hydrogenic series. Furthermore, the higher



VOLUME 65, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JULY 1990

12.0 L T T T 1 T T T 1

11.0
10.0

]
J a—

7o
6.0- y
4.0 /L—k
so{ L
2.0 T T T T T T T T T
20 8.0 40 50 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 4.0

m

FIG. 2. Feshbach resonances converging on hydrogenic
thresholds H(n) shown as effective quantum numbers v
=[—2E(m,n)]1™"? vs m. The solid lines are from Eq. (2)
with the quantum number m = n treated as continuous. The
intersections of these curves with integer values m define reso-
nance positions. Hyperspherical energies are nearly indistin-
guishable from these curves. The experimental resonances
from Refs. 11 and 24 are given as solid circles whose size is
comparable to a typical error bar. The Wannier ridge states
having m=n are those for which the dashed line intersects the
solid lines.

resonances in each observed series diverge away from the
Wannier ridge line and converge exponentially on the
respective hydrogenic threshold following a simple dipole
scaling law. Thus, we conclude that of all the 2n—1
channels in each n manifold, only the lowest + channel
(K=n—2, T=1) influences the photodetachment spec-
trum of H™. In fact, the — Feshback resonance below
H(n=2) is the only observed photodetachment reso-
nance'” in H™ which fails to fit this pattern. (Note that
the only + channel in the n=2 series has a repulsive di-
pole barrier which supports a shape resonance.’) Exper-
imental studies indicate that the lowest + channel
remains largely dominant for helium photoabsorption
also, '® but resonances seen in higher + channels suggest
that this dominance is weaker for He than H .

Another interesting feature of the experimental data
[Figs. 1(a)-1(d) in the preceding Letter] is that the au-
toionizing states show up as window resonances,'® indi-
cating that the dipole matrix element to the ‘“‘bound
part” of the resonant wave function is much smaller than
the continuum contribution. Resonances, being localized
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FIG. 3. The adiabatic two-electron density function shown
as a contour plot vs a and 6,5, displaying the model patterns for
the two lowest + channels in the n=6 manifold at R =80 a.u.
(a) and (b) correspond, respectively, to (41)* and (21)*
channels, i.e., v'=0% and 1 *.

at large R, thus have no physical overlap with the H™
ground state. The main decay mode for these autoioniz-
ing resonances appears to be the open + continuum of
the next-lowest hydrogenic threshold, at least when ener-
getically allowed.

To interpret the total dominance of the lowest +
curves, we display in Fig. 3 contour plots of the two-
electron density® as a function of a and 6,,. These plots
were obtained at R =80 a.u., corresponding approxi-
mately to the minima of the two lowest + curves,
(KT)*=(41)" and (21)*, converging to H(n=6). An
immediate observation from these plots is the extra nodal
line in 6, for the (21) T diabatic channel at 6,,=0.75x.
This would indicate that the d/dR nonadiabatic coupling
between these two + diabatic channels should be negligi-
ble.?' As a consequence, high double excitation is
achieved through an initial dipole transition into the
lowest continua of Fig. 1(b) followed by successive non-
adiabatic transitions between the dominant + channels,
each having no nodes in 6); similar to that in Fig. 3(a).
Accordingly, we propose that the selection rules for the
main channel interactions in H™ photodetachment are
most simply stated as An=—1, A4=0, and Av =0,
where v=3(n—K—T—1) is the bending vibrational
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quantum number of the three-body rotor,?? namely, the
number of nodes in 8,,. It is the approximate conserva-
tion of the v quantum number that serves as the main
outcome of this Letter.

We also note that at higher energies the Feshback res-
onances begin to exhibit new features. The first reso-
nance of the n =9 series at —0.00802 a.u. lies below the
n=38 threshold. (It remains to be seen whether the ex-
perimental structure just visible near the n=8 thresh-
old'' is associated with this resonance.) This has two in-
teresting implications. First, the main decay channel for
this resonance is no longer the »=8 continuum but the
next lowest continuum, namely, the n=7. Second, this
broad resonance will be strongly perturbed by the narrow
dipole resonances of the n=38 series lying very close to
the n=8 threshold [see Fig. 1(b)], as in other familiar
multichannel Rydberg spectra.?* This phenomenon
should become more pronounced and even ubiquitous as
higher photon energies are reached.

We remark in conclusion that our stable numerical
techniques permit computation of adiabatic potential
curves for H™ at energies very close to the double-
continuum threshold. The resulting analysis, coupled
with recent experimental observations, has identified the
dominant photodetachment channels for this process.
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