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Adiabatic hyperspherical potential curves are calculated for very highly excited states of H converg-
ing to H(n ~ 12). These potential curves reveal surprisingly weak channel interactions, manifested as
extremely diabatic multiple curve crossings. We demonstrate that only resonances associated with the
lowest "+" diabatic channel within each n manifold are observed in the recent experiments at Los
Alamos (Harris et al. ). A simple Rydberg-dipole formula gives the positions of all dominant resonances,
permitting extrapolation to arbitrarily high quantum numbers.

PACS numbers: 32.80.Fb

Our understanding of electron-electron correlation
effects in doubly excited states has advanced on several
fronts since the first observations of doubly excited lines
in the photoionization spectrum of He in the early
1960's. ' Among these theoretical methods, Macek's
adiabatic hyperspherical coordinate treatment has ac-
counted for many of the systematic properties of doubly
excited states, while providing qualitative insight into the
delicate balance between the electron-nucleus attraction
and the electron-electron repulsion in doubly excited lev-

els. This representation exploits the natural symmetry of
any two-electron atom by introducing a collective coordi-
nate system: a hyperradius R =[r~ +r2]'t, giving a
measure of the "size" of the complex, and a hyperangle
a=arctan(r2/r~), defining the degree of radial correla-
tion between two "valence" electrons. In Macek's adia-
batic approach, the two-electron Hamiltonian is diag-
onalized parametrically in R,

U(R; 0 )&p (R, 0 ) =U„(R)@„(R,0 ),
and the eigenvalues serve as potential-energy channels
for motion of the electron pair. All doubly excited reso-
nant states in any one particular hyperspherical channel
will exhibit the same correlation signature.

Approximate correlation quantum numbers (the so
called A —= "+"and "—," and KT) have been used to
classify the hyperspherical channels and establish the
dominance of the + channels over the —channels. The
purpose of this paper is however to report on a new selec-
tion rule in the photodetachment process of H, estab-
lishing the dominance of a few selected hyperspherical
channels. To this end, we follow the recommendation of
Lin, that to solve Eq. (1), the combination of a hyper-
spherical harmonic basis set and an independent-electron
basis set efficiently represents both the small and large
regions in R. Using such a basis set, Koyama, Takafuji,
and Matsuzawa' obtained an adiabatic description of

high-lying doubly excited 'P' states up to the n=7
threshold. We also employ a similar technique to obtain

accurate potential curves for the 'P' symmetry of H

up to H(n 12). The LS-coupled hyperspherical har-

monics involve Jacobi polynomials in cos(2a) and stan-

dard coupled spherical harmonics. The independent-

electron basis functions are instead composed of properly
symmetrized hydrogenic orbitals. Equation (1) is thus

converted to a generalized eigenvalue equation at each
value of R, Uc„U„(R)0c„,in which 0 is the full over-

lap matrix. This composite basis displays linear depen-

dence because of its overcompleteness, severely hamper-

ing the diagonalization procedure and producing unphys-

ical eigenvalues. To overcome this problem, the Hamil-

tonian matrix U is transformed into the representation in

which 0 is diagonal, while discarding all the overlap ei-

genvalues corresponding to null solutions of the eigensys-

tem. The total basis set is thus orthogonalized at each

R, in a stable and automatic fashion. As a rule of
thumb, the total number of basis functions in the new

transformed representation increases by unity for every

10 a.u. increase in R.
Figure 1(a) shows the adiabatic potential-energy

curves generated for the 'P' symmetry of H accessed
by the photodetachment experiments at LAMPF. '' For
the present calculations, which give these curves up to
the n=12 hydrogenic threshold, we have used a primi-
tive basis set of 49 hyperspherical harmonics and 123
two-electron orbitals. Since the density of states grows
dramatically at high energies and the curves belonging to
diferent manifolds begin to exhibit sharp avoided cross-
ings, we show these potential curves as R-dependent
effective quantum numbers v„(R)—= I —2U„(R)] 't vs

JR. We stress that these potential curves have been
plotted adiabaticaliy, whereby the closeness of avoided
crossings truly reflects weak channel interactions, or ap-
proximate symmetry. (Reference 3 gives a molecular in-
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quantum number of the three-body rotor, namely, the
number of nodes in 8~2. It is the approximate conserva-
tion of the v quantum number that serves as the main
outcome of this Letter.

We also note that at higher energies the Feshback res-
onances begin to exhibit new features. The first reso-
nance of the n=9 series at —0.00802 a.u. lies below the
n=8 threshold. (It remains to be seen whether the ex-
perimental structure just visible near the n 8 thresh-
old" is associated with this resonance. ) This has two in-

teresting implications. First, the main decay channel for
this resonance is no longer the n=8 continuum but the
next lowest continuum, namely, the n=7. Second, this
broad resonance will be strongly perturbed by the narrow
dipole resonances of the n 8 series lying very close to
the n=8 threshold [see Fig. 1(b)], as in other familiar
multichannel Rydberg spectra. This phenomenon
should become more pronounced and even ubiquitous as
higher photon energies are reached.

We remark in conclusion that our stable numerical
techniques permit computation of adiabatic potential
curves for H at energies very close to the double-
continuum threshold. The resulting analysis, coupled
with recent experimental observations, has identified the
dominant photodetachment channels for this process.
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