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Spontaneous Symmetry Breaking in a Laser: The Experimental Side
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We show that a qualitative theory of bifurcations can provide an understanding of the spontaneous

symmetry breaking and the appearance of traveling waves leading to spatiotemporal complexity in the
transverse patterns of the intensity of a CO2 laser.
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The existence of spatial (in addition to temporal) com-

plexity in a laser was studied recently both theoretically
and experimentally. ' However, the origin and the se-

quence of events leading to such situations are still in

need of clarification.
From a theoretical point of view, a laser can be de-

scribed in terms of the well-known Maxwell-Bloch equa-
tions (see, for example, Ref. 4). In principle, one can
solve these partial diff'erential equations numerically over
a wide region of parameter space, but the most impor-
tant features of the solutions and their bifurcations can
also be produced by the qualitative theory of differential
equations (bifurcation theory). This qualitative method
was used' to analyze nonlinear differential equations
with an intrinsic spatial symmetry. Here we adopt this
procedure to analyze the transverse intensity patterns
that can emerge at the output of a laser, and we provide
experimental evidence of certain features that appear in

a laser constructed with a large-diameter CO2 laser tube
in which we are able to change the control parameter
adiabatically.

The stable solutions of a symmetric system do not
necessarily bear the same symmetries as the system in-

cluding the boundary conditions, a phenomena usually
referred to as spontaneous symmetry breaking. The
symmetry of a solution (its isotropy group) is generally a
subgroup of the group of symmetries of the system. An

appropriate question is: For which subgroups of the en-
tire symmetry group can we expect solutions? This
question was addressed in Ref. 5 where the authors
proved that the bifurcation sequences of a nonlinear sys-
tem are determined largely by the symmetries of the sys-
tem regardless of any other characteristic, including the
details of the particular model.

A laser with an active medium confined within a circu-
lar tube and spherical mirrors has an obvious O(2) sym-

metry. The observation of spatial symmetry breaking
and the appearance of associated temporal oscillations
with a well-defined frequency and small amplitude sug-

gest the existence of Hopf bifurcations implying an addi-
tional S' symmetry (time basis of the type e'"'). Furth-
ermore, the evolution of the patterns, as shown in this

paper, indicates the predominance of structures with a
D„(dihedral) symmetry with nonstandard actions (spa-
tial bases of the type e —' for diA'erent values of
I=n/2) on the O(2) group. On the basis of these as-
sumptions, the classification of the diAerent patterns can

be addressed using subgroups of a group that contains
both the spatial symmetry of the problem [O(2)] and

the additional temporal symmetries added to the system
when different modes are born. Generically, the non-

linearities couple those modes, creating a complicated
behavior. We consider the easiest situation (the coupling
of two modes) as a model for our experiment. In Table I

adapted from Ref. 5, we tabulate the type of solutions
for different isotropy subgroups corresponding to mode-
mode interactions associated with actions l and m (lcm)
over C . This is to say, we classify the patterns accord-
ing to the spatiotemporal symmetries of waves of the
form

E —1+ (&ie(le+&2e (IH)erat+ (& e™~e
—ime)eitt't

where E is the electric field, z„for n =1-4 are functions
of the radial coordinate and time, 0 is the angular coor-
dinate, and 0 and 0' are arbitrary frequencies.

Beginning with the most symmetric state (0 in Table
I) and proceeding in the direction of the states of lower

symmetry (14 in Table I) the bifurcation sequence can
be ordered as indicated. We say that a pattern A has

higher symmetry than a pattern 8 if the isotropy sub-

group of A includes the isotropy subgroup of B. Further-
more, a bifurcation of one pattern into another is allowed

only when the dimension of the invariant subspace is in-

creased by 2 due to the fact that a spatial symmetry
breaking is associated with a Hopf bifurcation in the
time domain. Accordingly, the structure of the bifurca-
tion sequences corresponding to our case are shown in

Fig. 1 where allowed symmetry-breaking transitions are
indicated by an arrow.

It is worth observing that the diff'erent solutions are
distinguished not only by their geometrical shape but
also by the temporal behavior of each point of the pat-
tern and the relative phase of any pair of points in space
which follows directly from the functional form of the
field.

To confirm the relevance of this theory in the under-

standing of the bifurcations taking place in lasers, we

used a COq laser with a tube cross section of 22 mm in

diameter. An intracavity optical system consisting of
two converging lenses with a variable distance between
them provides an accurate control of the Fresnel num-

ber. The optical system at one end of the laser, consist-
ing of two lenses and a plane mirror, acts as a mirror
with a variable radius of curvature, as described in Ref.
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TABLE I. Isotropy subgroups of O(2) x T' (adapted from Ref. 5). The action of So(., lt, v),
K, Z(8, (()),(()1), and Zt, (8,())i, (()1) over the vectors of the basis (z (,z~,z),z4) is defined as

S(g }( } ( in(a+A( ) in(a —|I) ie(v+i oi ) ie(v —kol ) ),P, V Z l, Z2, Z3, Z4 = e zl, e 3g 4

K(z(,z2, z 3,z4) - (z),z (,ze, z 3)

Z(8, (l)), il)2) =(e' ' ' z), e' " "z2,e' "' + "z),e' " ""'z4), Ze(8, (()(,)2) =Kz(8, (I)),(I)2)K.

0
1

2
3
4
5

6
7
8
9

10
11
12
13
14

Isotropy subgroup

O(2) x T
S(O, O, I ) x S(1,—I,O)

S(0, 1,0) xs(1,0, —m)
S(0,0, 1) x Kx Z(n/I, n, o)
S(0, 1,0) x Kxz(n/m, o, n)

S(O,O, I ) x Z(n/I, n, O)

S(0, 1,0) x Z(nlm, o, n)
S(1,l, m)

S(l, l, —m)
K x Z(n, ln, mn)

Z& (O, n, o) x Z(n, ln, mn)
Zk(o, o, n) x Z(n, ln, mn)

Z(n/l, n, mn/I)
Z(n/m, ln/m, n)

Z(n, ln, mn)

Basis

Zl Z2 Z3=Z4=0
Z2 =Z3 —Z4 —0
Zl =Z2 —Z4 —0

Zl Z2s Z3 Z4 0
Zl Z2 0, Z3 Z4

Z3 =Z4 0
zl =z2=0
zl =z3=0
zl =z4=0

Zl Z2, Z3 Z4

Z I Z2, Z3 Z4

Zl Z2, Z3 Z4

z3=0
zl =0
z, ~0

Comments

Trivial- fully symmetric
I-traveling wave (I-TW)

m-TW
I-standing wave (I-SW)

m-SW
I-TW+ I-SW

m-TW+ m-SW
I-TW+m-TW (same direction)

I-TW+m-TW (opposite direction)
I-SW+ m-SW

I-SW+m-SW (m odd)
I-SW+m-SW (m even, I odd)

Three frequencies (IA I )
Three frequencies (m p¹1)

Three frequencies

2. The time-averaged intensity pattern is observed on in-

frared imaging plates, while the instantaneous behavior
in time of two isolated points in the pattern is detected

by two HgCdTe detectors.
In Fig. 2 we show sequences of patterns observed as

the distance between lenses is changed. DiAerent se-

quences are obtained from apparently identical initial

conditions in which the pattern has a stable Gaussian
profile. It is clear that even if Fig. 2 can be used as a
clue to identify different paths in the symmetry-breaking

/
~e

/

process, it does not provide enough information to classi-
fy the sequence unambiguously, nor is there sufficient
evidence that the theoretical process described previously
is really taking place in the laser. At this point it be-
comes important to consider the local evolution of the in-

tensity in time, the frequencies of oscillation, and the rel-
ative phases of different points in the pattern.

Initially, we distinguish two possible paths in the pro-
cess of breaking the initial radial symmetry of the pat-
tern shown in Fig. 2(a): (I) the generation of two inten-
sity peaks [Fig. 2(b)j with the simultaneous appearance
of temporal oscillations with a frequency of the order of
2 MHz (see Fig. 3) for every point in the pattern except

(a)

(b) (c)
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(g)
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Pe pattern ¹10 or 11 depending
on values of "l" and "m"

FIG. 1. Bifurcations of O(2) x T The patterns shown cor-.
respond to the average intensity for the case I =1, m =2. The
dashed lines indicate transitions not observed in our laser while

the solid lines indicate those that have been observed. These
patterns must be compared to those shown in Fig. 2.

FIG. 2. Spatial patterns of the average laser intensity as ob-
served in the thermal plates. From (a) to (i) we show the bi-
furcations producing the spontaneous symmetry breaking of a
Gaussian pattern in our laser.
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FIG. 3. (a) Intensity as a function of time measured at the
two peaks of Fig. 2(e); (b) the power spectrum detected at one
of the peaks.

x(a. u. )

FIG. 4. Cross sections of pattern 2(d) at two dilTerent posi-
tions. The lower trace is a cut through the center of the beam
and perpendicular to the position of the two intensity peaks.
The upper trace is a cut parallel to the previous one passing
through the intensity peak.

for those lying on a line passing through the center of the
beam and perpendicular to the line joining the two
peaks; (2) the generation of four peaks [Fig. 2(c)] in the
averaged intensity with the appearance of temporal oscil-
lations at every point of the pattern except for those ly-
ing on two lines perpendicular to each other and separat-
ing the peaks. In both cases, the lines with no oscilla-
tions are the boundaries through which there is a discon-
tinuous change in phase by x rad.

The two configurations described above may bifurcate
into four easily distinguished patterns with two or four
intensity peaks [Figs. 2(d)-2(g)].

The pattern of Fig. 2(d) shows oscillations whose rela-
tive amplitude varies depending on the position. The
points lying on the line that originally separated the
phases in Fig. 2(b) show now an almost 100% modula-
tion depth except for the center of the beam where the
intensity is zero (Fig. 4). On a line parallel to the previ-
ous one and passing through one of the peaks we observe
oscillations with a dc basis. This behavior is a clear indi-
cation of the existence of a traveling wave around the
center of the beam and therefore is pattern 5 in the
classification of Fig. 1.

Another observed state is represented by four peaks of
the averaged intensity [Fig. 2(e)]. It is easily dis-
tinguished from the previous four-peak configuration by
its temporal behavior at the maxima. Two of them, at
opposite positions in space, oscillate quasiperiodically
with one of the frequencies in phase and the other one
out of phase (see Fig. 5), while the other two maxima
show a single frequency in phase (pattern 9 of Fig. I).

A diA'erent pattern observed in this second stage of the
bifurcation sequence also consists of four maxima. All
peaks oscillate with two frequencies but points lying on
three diA'erent lines crossing each other at the center
show oscillations at a single frequency. The amplitude of
the oscillations vanishes at the center of the beam. This
state corresponds to pattern 11 in Fig. 1.

Finally, the last possible state consists of four peaks
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FIG. 5. (a), (b) Intensity as a function of time measured at
two opposite peaks of Fig. 2(e); (c) the power spectrum corre-
sponding to the signal detected at one peak. Note that the low
frequency is out of phase while the high frequency is in phase.

with a ring. This pattern presents evidence of a traveling
wave similar to the ones described previously. A change
in the control parameter from this state does not seem to
affect the average spatial structure [Fig. 2(h)] but the
local time behavior becomes complex, suggesting the ex-
istence of a new Hopf bifurcation. We associate this sit-
uation with pattern 13 of Fig. 1.

A further decrease of the distance between the lenses
yields an almost radially symmetric pattern on the aver-
age [Fig. 2(i)], but it shows a complicated behavior in

time (chaotic for some spatial points) (Fig. 6).
This experimental bifurcation sequence provides evi-

dence for the cascade shown in Fig. 1 in which only some
paths are actually selected by the system. In fact, pat-
terns 1 and 2 of Fig. 1 involving only rotating waves are
not observed in our experiments. In contrast, standing
waves with I =1 or m =2 are observed with an apparent
preference for the l=1 standing wave. Fifteen out of
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FIG. 7. Complex average intensity patterns observed by in-

creasing the Fresnel number of the cavity. Note the appear-
ance of different number of peaks in the internal and external
regions of the pattern which indicates the coexistence of
different values of "I"and "m."

FIG. 6. (a) Intensity as a function of time for a spatial point

corresponding to Fig. 2(h); (b) the power spectrum detected at
that point. Note the large dips in the values of the intensity
and its irregular behavior.

twenty consecutive s~eeps across the bifurcation point
led to the pattern of Fig. 2(b) indicating that its basin of
attraction is larger than the one corresponding to the
pattern of Fig. 2(c).

From the pattern shown in Fig. 2(i), upon decreasing
the distance between lenses, we find new structures in-

volving the appearance of more rings and up to 24 inten-
sity peaks. These bifurcation sequences have different
values of I and m in different rings. Some typical pat-
terns are shown in Fig. 7. A detailed analysis of these
patterns is beyond the scope of this Letter.

In conclusion, we have demonstrated that the spa-
tiotemporal behavior of lasers can be described qualita-
tively by group theory, that the structures observed are
created from the symmetry breaking of the O(2) x T
group, and that this spontaneous symmetry breaking is
at the origin of a gradual complexity in space and time
by separating regions in which the dynamical behavior is
essentially different. After the appearance of two or
three frequencies the temporal behavior of the local in-

tensity becomes usually chaotic and almost any degree of
spatial symmetry tends to disappear.

After several bifurcations the cross correlation func-
tion between two points in the pattern decreases as the
distance between points increases. A decreasing cross
correlation function is usually an indicator of turbulent
behavior. ' In such situations a more careful study of
the particular equations of the laser is necessary if one is

to make any predictions about the behavior of the sys-
tem.
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