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We develop the principle of *“‘speckle-pattern tomography” in the multiple-scattering regime, i.e., the
technique of using correlations between complex interference patterns to determine the position of a spe-
cial scatterer for either electromagnetic or acoustical wave propagation through a diffusive scattering
medium. We focus on two concrete examples which are relevant to experiments and possible applica-
tions: (i) detecting the position of a stationary special scatterer in a medium of moving scatterers; (ii)
detecting the appearance and position of a new added scatterer.

PACS numbers: 42.20.—y

How can one detect the appearance and the position of
a new microcrack in a metal which already contains
many such defects, using ultrasonic nondestructive test-
ing techniques? How can one trace the position of a
slow-moving particle in a fluid which contains a high
density of fast-moving scatterers (such as in a milk), us-
ing optical waves? Is it possible to detect the motion of a
far-away airplane which is separated from the radar
detectors by thick clouds which scatter the radar signal
rather strongly? Such are the possible real-life applica-
tions of a principle that we formulate in this Letter,
namely, the principle of speckle-pattern tomography in
the multiple-scattering regime.

Imaging of a special object in a weak-scattering medi-
um by means of passing a probing wave through it goes
back as far as human eyes could see. In scientific terms,
this is most conveniently described by the Born (or
single-scattering) approximation in standard scattering
theory, a simple example of which we illustrate in Fig.
1(a). Let us suppose a plane wave is incident onto a
slab-shaped medium which is assumed to be free of ab-
sorption, i.e., the rate of absorption 1/7, is much less
than the inverse time it takes the wave to pass through
the slab, ¢/L (c is the wave velocity.) This wave can be
thought of as either an electromagnetic or an acoustical
wave; for simplicity we shall ignore the vector nature of
these waves, and use a scalar approximation to describe
our principle. Assuming in addition that the inhomo-
geneities in the slab give rise to only weak elastic scatter-
ing of the incident wave, characterized by a wave trans-
port mean free path /*>> L, then it is clear that most of
the incident wave remains unscattered upon exiting the
slab, whereas the scattered wave, which has an overall
intensity much smaller than the unscattered beam, con-
sists of at most contributions from single-scattering
events, and the scattering by a special object located at
ro, which let us say scatters the wave more strongly than
the other scatterers, gives rise to a spherical (scattered)
wave which forms the image of this object to the right of
the sample. Without loss of generality, we shall assume
throughout our discussion that the inhomogeneities in
the scattering medium can be described by pointlike

3120

scatterers with a concentration ny; then /* is given by
I*=1/n;6*, where o*=[0(0)(1 —cosf)dQ is the
transport scattering cross section for each scatterer. We
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FIG. 1. (a) Illustration of imaging in the single-scattering
regime L </*. Most of the incident plane wave propagates
through the sample unscattered; the spherical scattered wave
due to the special scatterer placed at ro forms the image of this
object on the right of the sample. (b) Illustration of the princi-
ple of tomography of the position of a special scatterer in the
multiple-scattering regime L >[*. Here the entire transmitted
beam is the result of multiple scattering in the sample; the typ-
ical number of scattering events for any partial wave is
~(L/I*)2. T(qs,qs) is the intensity transmission coefficient in
a far-field screen which is placed at a distance 4> L from the
right-hand side of the slab-shaped sample. T(qp) is the
near-field intensity transmission coefficient, collected by a
screen placed on the right face of the sample. When averaged
over the positions of all the scatterers in the sample except the
special one placed at ro, these transmission coefficients (or their
correlation functions) contain information about the position of
the stationary scatterer ro. (c) Feynman diagram for calculat-
ing the average far-field (near-field) intensity transmission
coefficient with a stationary scatterer placed at ro. (d) Feyn-
man diagram for calculating the correlation function
Caba'y =(6T(qa,9)8T(q.,qs')), again for the case of a station-
ary scatterer fixed at ro.
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thus see that tomography, or in this case simply imaging,
of a special scatterer can be achieved easily in the Born
or single-scattering regime. Most present-day imaging
techniques are based on such a simple principle.'

We now focus on the opposite strong- or multiple-
scattering regime [* < L (but still in the weak-localized
regime A</*). As illustrated in Fig. 1(b), the plane
wave which is incident onto the left side of the slab must
in this case scatter multiply in traversing the sample, i.e.,
all the partial waves must diffuse across the sample, with
a typical number of scattering events being of the order
(L/I*)?%. The unscattered beam in this case is exponen-
tially attenuated, by a factor e ~%'*. The outgoing-wave
intensity pattern will in this case be a complicated in-
terference pattern, which is often known as a speckle
pattern. Suppose a special strong scatterer is again
placed at rg; it is clear that no simple image of this ob-
ject shall be formed on the screen. Is it then still possible
to use the information contained in the complex interfer-
ence speckle pattern to locate the position of this special
scatterer? From a fundamental point of view this should
be possible, as the speckle-pattern intensity as a function
of angle or frequency is uniquely determined by the posi-
tions of all the scatterers in the system, i.e., it is a kind
of “fingerprint” of the positions of all the scatterers in
the sample. Thus, it might still be possible to retrieve
some important information about the location of the
special scatterer, thus allowing one to perform tomogra-
phy in a random-scattering medium in the multiple-
scattering limit. This is precisely what we set out to do
in this Letter.

We shall assume in our subsequent discussions that
absorption can still be regarded as negligible even in the
multiple-scattering limit, i.e., we require that 1/z,
<« D/L? where D=cl*/3 is a diffusion constant which
characterizes the random-walk-like multiple-scattering
process of the wave propagation. We make this require-
ment simply because if a random-scattering medium is
strongly absorbing, then no information about the
scatterer positions will be transmitted through the slab-
like sample, and tomography in this case will not be pos-
sible. The effect of weak absorption can be easily incor-
porated into our theoretical framework, and this will be
done elsewhere due to space limitations.

The easiest experimentally measurable quantity
relevant to our discussion is the far-field intensity
transmission coefficient 7(q,,qs), which is defined as the
intensity in direction g, on the far right-hand side of the
sample, if the unit-flux incident wave is in a direction q,
on the left-hand side [see Fig. 1(b)]. Here q is the trans-
verse wave vector for the wave function outside the disor-
dered sample (on either side), satisfying the conservation
relation Q2+ k2 =k§ =(w/c)?, with the z direction being
the normal to the slab. From the point of view of tomog-
raphy, it is even better to have the near-field intensity
transmission coefficient, 7(q,,p), where p is the trans-
verse spatial coordinates on the right face of the slablike

sample, as it contains more direct information about the
position of a special scatterer. But it may not be easily
attainable in realistic experimental situations, as the
near-field speckle-pattern intensities vary on length
scales of the wavelength A, which is sometimes difficult
to resolve with simple photon detectors.

Coherent diffusive (i.e., multiply scattered) wave
transport has been at the heart of many recent advances
in the so-called “mesoscopic physics.” A few well-known
examples include the weak-localization effect,? the
universal conductance fluctuations,® the extreme sensi-
tivity to impurity motions, and the anomalous 1/f noise
in the context of the transport properties of low-
temperature electronic systems;* as well as the diffusive
wave spectroscopy,>® the enhanced backscattering
peak,>’ the long-range correlations, and the *“memory
effect”® in the context of optical wave propagation
through disordered scattering medium. In a particularly
related work, the idea of using correlation functions in
the magnetoconductance fluctuations in a mesosopic
metal to determine the position of a two-level tunneling
center has been recently proposed by Fal’ko and
Kmel'nitskii.’

We start by considering the problem of trying to lo-
cate a special scatterer which is fixed in space at 1o [see
Fig. 1(b)], while the rest of the scatterers (total number
M) move around randomly in a multiply scattered ran-
dom medium. One concrete example in real life is trying
to use a laser beam to locate a slow-moving particle im-
mersed in a milklike dense scattering medium where
simple images of this special scatterer are totally absent.
In this context we define the ensemble average (-) to be
an average over the M moving scatterer positions, i.e., a
simple time average. The important correlator for the
scattering potential « in Fourier space is given by
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where V' =AL is the sample volume with A4 being the
cross-sectional area of the slab. From Eq. (1), and using
the standard Feynman diagram for the average transmis-
sion coefficient in the multiple-scattering regime L>[*
> [see Fig. 1(c)], we easily obtain

2

Thus we see that the average transmission coefficient de-
pends explicitly on the distance of the special stationary
scatterer relative to the surface of the slab. This makes
it possible to determine the longitudinal position zg of
the special scatterer by a simple measurement of the
average far-field transmitted intensity. If the special
scatterer is moving slowly (compared to the motion of

3121

Zo
L

Zo_1

L 6

(T(qq,95,T0)) = 1—

* *
3nl 1+ 3/1FL
k2AL A




VOLUME 65, NUMBER 25

PHYSICAL REVIEW LETTERS

17 DECEMBER 1990

the rest of the scatterers), this expression allows for
direct tracking of this special scatterer. From a practical
point of view, this method for locating a special scatterer
is most useful in the quasi-2D limit, i.e., if 4 ~LI* (we
note that the thickness of the sample is still large com-
pared to 1), so that the zo-dependent term in Eq. (2) is
as large as the constant background term. This extreme
sensitivity of the transmitted intensity in quasi-2D sys-
tems to adding a single stationary scatterer to a fluctuat-
ing disordered diffusive scattering system, even at the
level of the average transmission coefficient, reflects a
general property of coherent multiple scattering in
quasi-2D disorder media, in which all random-walking
partial waves pass through any given scatterer with a
finite probability, independent of the size of the system,
provided it remains phase coherent. This effect in fact
was the reason for the unusually large magnitudes of
low-temperature 1/f noise in mesoscopic disordered met-
al films.*

As is shown in Eq. (2), it is only possible to determine
the longitudinal position of a special scatterer zo from
the knowledge of the far-field transmitted wave intensity,
in the multiple-scattering regime. Let us now consider
the average near-field transmitted intensity in the same
situation. Using similar diagrammatic techniques [see
Fig. 1(c)], we find

*
1+ 217L
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where

n=|

F(rg) = [1 —%] Y. sin(knzo)

xsinlk, (L —1*)1Ko(k,|p—pol) ,
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and k,=nn/L. Thus we see that the average near-field
intensity in fact has a peak at the position p=py. The
form factor F(ry) for the case that the special scatterer
is close to the right edge of the slab, z¢o/L ~1, may be
written as

F(rg) = —zo/L){(p—po) 2+ (L —1* —2z()?] ~'2
—Wp—po) 2+ (L+1*+20)21 73,

The particularly strong p dependence of this result in 3D
allows for the realistic possibility to locate completely
the position of a stationary scatterer in a fluctuating
multiple-scattering medium, which we regard as a truly
interesting result. Again visualizing the situation by the
example of a slow-moving scatterer immersed in a milk-
like medium, our method predicts that a measurement of
the time-averaged intensity on the sample surface, using
an averaging time which is long compared to the time
scale of the random-moving scatterers but short on that
of the slow-moving special scattering center, shall yield
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directly the position of this special scatterer.

In the case where direct measurement of the near-field
transmitted intensity is not possible, say because the
detector does not have good enough spatial resolution,
and considering the 3D limit where the zo-dependent
term in the average far-field transmission coefficient is
too small to allow for realistic detection of the position of
the special stationary scatterer, it is still possible to ex-
tract the longitudinal position of the special scatterer at
ro by collecting the angular correlation function of the
far-field transmission coefficient 7(q,,qs). In the ab-
sence of a stationary scatterer, i.e., when a complete en-
semble average of the scatterer positions is made, the an-
gular correlation function of the far-field transmission
coefficients  Capas=(8T(q4,q5)87T(q.,qs'))? has been
computed before, and the dominant contribution to this
function (the C" term in the notation of Feng et al.®)
contains a momentum-conservation condition, i.e., it is
zero unless Aq, =Aqy (AqQ,=q, —q.). Upon adding the
stationary scatterer at ro, it is easy to show that such a
momentum-conservation law is broken, and the C‘"
correlation function becomes finite at all values where
Aq,#Aq, and is explicitly given by

Capdy =9U*L/A)XT(q4,9))°G-,(Ag4,0s) . (5)
where

sinh(Agazo)sinhlagy (L —z0)1 |’
sinh(Ag,L)sinh(Ag,L)

G;O(Aqu,Aqb )=

(6)

Since in the absence of a fixed special scatterer this
correlation function is identically equal to zero for
Aq,#Aqp, and it becomes nonvanishing after the place-
ment of such a scatterer, this cross-correlation technique
offers a good way to detect the longitudinal position of
the fixed scatterer zo, even when the near-field intensity
information is absent in the 3D case. Experimentally,
one can simply fix Aq, =0, i.e., using a single incident
beam, record the “‘snapshots’ of the far-field transmitted
speckle pattern at different times, and perform digitally
the cross correlations of the transmission coefficients for
different Aq,’s.

Let us now consider a different situation in which the
idea of speckle-pattern tomography could be very useful.
Imagine we would like to locate the position of a new mi-
crocrack in a metal which already contains many such
microcracks, due to mechanical stress on the system, by
using an ultrasonic nondestructive detection technique.
The usual ultrasonic imaging techniques in this limit will
not function if the system involved is in the multiple-
scattering regime L>/*. In this context, it is most con-
venient to measure the difference speckle pattern, i.e.,
one subtracts the two speckle patterns before and after
the addition of a special scatterer at ro. (In fact, the
change in the speckle pattern indicates that one or more
new cracks have been created in the sample.) Assuming
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that the near-field intensity can be directly measured, the
difference average intensity can be similarly calculated
to yield

(6T(qa,p,10))=(T(qq,p,r0) — T(qu,p))

6 _2A*L
”F(ro) —A

_3*
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where the average is again taken as corresponding to
moving all the other M scatterers randomly, and F(x) is
given in Eq. (4). We note that this average difference
near-field speckle intensity is again peaked at p=py,
thus allowing one to locate the position of the new crack.
In real situations, it may not be possible to make a real
average over the positions of the other M scatterers in-
side the sample, and we claim without a proof that a
simple angular average around the peak position of the
unaveraged difference speckle pattern may be a good
enough approximation to achieve speckle-pattern tomog-
raphy of the added scatterer.

In summary, we have here laid the theoretical founda-
tion for performing tomography in the multiple- or
diffusive-scattering regime using coherent waves, where
conventional imaging techniques are not applicable. We
find that the recent progress in the conductance-
fluctuation theory in mesoscopic metals allows us to give
precise, analytical expressions which enable one to locate
the position of a special scatterer in a highly scattering
medium. Our results are general, and can be used in the
context of many different kinds of waves, provided the
wave function in question is sufficiently coherent. Exper-
imental verification of the various ideas presented here
could lead to realistic applications in a range of different
engineering disciplines, such as acoustical detection of
defects in metals and other materials, and radar or sonar
detection of objects in an highly scattering environment.
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