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Experimental Demonstration of Chaotic Scattering of Microwaves
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Reflection of microwaves from a cavity is measured in a frequency domain where the underlying clas-
sical chaotic scattering leaves a clear mark on the wave dynamics. We check the hypothesis that the
fluctuations of the S matrix can be described in terms of parameters characterizing the chaotic classical
scattering. Absorption of energy in the cavity walls is shown to significantly affect the results, and is
linked to time-domain properties of the scattering in a general way. We also show that features whose
origin is entirely due to wave dynamics (e.g. , the enhancement of the Wigner time delay due to time-
reversal symmetry) coexist with other features which characterize the underlying classical dynamics.

PACS numbers: 05.45.+b, 03.65.Nk, 03.80.+r, 24.60.Ky

In the present Letter we report on the first experimen-
tal demonstration of what can be called "chaotic wave
scattering, "

namely, the scattering of waves from sys-
tems for which the underlying classical (ray) dynamics is
chaotic. Our aim is to show that the fluctuations in the
scattered wave function, which were predicted to mani-
fest the underlying classical chaotic dynamics, ' are
indeed observed Am. icrowave-scattering experiment
was chosen for this study since in this kind of experiment
one can measure both the amplitude and the phase of the
reflected wave, which is not the case in quantum-
mechanical measurements. In addition, numerical simu-
lations were performed, and some of the results are
presented here. This threefold comparison between ex-
periment, theory, and simulation serves to clarify the link
between classical chaotic scattering and its wave-
mechanical analog.

Classical chaotic scattering and its wave-dynamics
counterpart have been extensively discussed in the litera-

FIG. 1. The elbow system and a typical classical trajectory.

ture. ' We shall not attempt to summarize this subject
here, but rather discuss its characteristic features, as
they appear in the example we study. We consider the
scattering of microwaves from an "elbow"-shaped cavity
(see Fig. 1) which is fed by a waveguide. A detailed
semiclassical analysis of this system will be published
elsewhere. From the classical (geometrical optics) point
of view, this is nothing but an opened Sinai billiard. It is

also a variant of the n-disk-scattering problem since
the elbow can be considered as a symmetry-reduced
four-disk system. The elbow is different, however, in

confining the asymptotic dynamics to the waveguide, in

contrast to the n-disk problem, where the particles can
scatter in any direction. Of prime importance is the
classical probability to stay a given time t inside the cavi-

ty. For problems of the elbow type it can be shown that
this probability can be written as P(t) =yexp( —yt)
(see Fig. 2), where y is intimately related to the parame-
ters which specify the classical chaotic dynamics. It is

important to emphasize that in the system considered
here there are relatively few trajectories which stay a
short time in the elbow: On average, a trajectory goes
through many collisions with the walls before it scatters
out (see Fig. 1). For this reason one can neglect the con-
tributions of short paths (or their wave counterparts) in

the present analysis.
In contrast with classical dynamics, waves can travel

in the waveguide only in a discrete and finite set of
modes, which correspond to quantized values of the
transverse momentum k, =nn/d, and 1 ~ n ~ kd/tt =L,
where k is the wave number and d the width of the
waveguide. The scattering problem is completely deter-
mined in terms of the scattering matrix 5, which is an
LxL unitary and symmetric matrix. The symmetry is
due to the fact that our problem is invariant under time
reversal. The probability to scatter from mode n to
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100 semiclassically to be

(T(~))=(I+I/L)y '. (3)
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FIG. 2. The time spectrum ~S(r) ~' and the histogram of the
classical staying time distribution. Inset: Measured (solid
line), theoretical (dashed line), and simulated (dash-dotted
line) absolute value squared of the autocorrelation function of
S with respect to m.

Thus, the classical parameter y, defined above, appears
as a frequency correlation length in the wave-mechanical
description.

The relation of the wave-mechanical behavior to the
underlying classical dynamics is best observed in the
time domain where the representation of the S matrix is

simply the Fourier transform of S(ro), S(t). One can
show that ~S(t)~ should approach the classical expres-
sion exp( —yt), once the time t is sufficiently long so that
the density of the classical trajectories which live in the
elbow for this time is large enough.

A second important time-domain quantity is the
Wigner time delay, defined as

T( ) .S ( ) t)S(ro) 8+(co)
&co Bco

where S =exp[i@(ro) j For ela. stic scattering, T(ro)
coincides with the classical delay time in the semiclassi-
cal limit. T(ro) is a wave-mechanical function whose
value depends on the proximity and distribution of the
poles of S. However, its average value can be calculated

mode m is given by ~S„~ . The extreme case, which is
studied here, is when L = l. In this case the propagation
in the waveguide is fully wave mechanical. However, the
scattering of the wave in the cavity can still be described
in semiclassical terms, as the size of the cavity is large
compared to the wavelength.

The semiclassical theory' predicts the following form
for the frequency autocorrelation function:

C;, (bro) =(Si) (ro+ —,
' bro)S;, (ro —

—,
' Bco)) cc 1

1 i Bco/y—

(I)

The term 1/L in (3) is caused by coherent interference of
time-reversed paths, in systems with time-reversal sym-

metry.
In the limit L»1, (3) reduces to (T) =y ', which is

just the mean staying time of a classical particle in the
scattering area. However, in our case L = 1, and
(T) =2 y ', twice the classical value. This wave-

mechanical enhancement of the staying time is directly
observable in experiments such as the one described here.

The experimental setup in which we tested the above
predictions consists of an elbow-shaped cavity made of
polished brass, whose straight wall is -50 cm long. The
openings of the cavity have a rectangular cross section
which is 47 mm wide and 22 mm high. One of the ports
is closed by a brass plate, while the other is connected via

a linear taper to a standard waveguide-to-coax adapter,
which is in turn connected to an automatic network
analyzer (model HP 8510B). The network analyzer can
completely separate the transmitted from the reflected
wave, thus enabling precise measurement of the
reflection coefficient over a wide range of frequencies.

In the present experiment the frequency range was
6-8 GHz, scanned in 2.5-MHz steps (giving a total of
801 data points). In this frequency range either one or
two modes can propagate in the waveguide. However,
since the waveguide is connected to the coax via a single

symmetrically placed pin, the antenna can only transmit
and receive one mode, while the second mode is reflected
back into the cavity. Thus, the 5 matrix is inherently
1 x1 over the whole frequency range. Since the system is

essentially invariant with respect to scaling of the length
and frequency, we will normalize the length of the cavity
and the speed of light to l. In these units the value of y,
evaluated classically, is 0.1.

Figure 2 shows the power spectrum of the measured
complex reflection coefficient. The small peak at t =0 is

the result of reflection at the coax-waveguide interface,
and its small size ensures that the matching was good.
Superimposed is the classical staying-time distribution
P(r) for this system. We can see that both the time
spectrum and the classical staying-time probability
indeed decrease exponentially on average, with the same
slope y. This compares favorably with the semiclassical
prediction.

The autocorrelation (I) was calculated from the data,
and its absolute value squared is shown in the inset of
Fig. 2, together with the semiclassical result from (I)
and the results of a numerical simulation. One can see
that there is good agreement, and, in particular, the
correlation length of y =0.1 is accurately reproduced.

Since the S matrix is I x I, one would expect the am-

plitude of the reflection coefficient to be identically 1.
However, this is not so, as can be seen from the inset in
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FIG. 3. Distribution of the measured (solid line) and simu-
lated (dashed line) value of !S!'. Inset: Measured reflected
power lS!' as a function of frequency.

FIG. 4. Measured reflected power !Sl (solid line) and the
prediction of (4) !S!'=exp(—2aT) (dashed line) as a func-
tion of frequency.

S(to+ia) = S(to)e ~~~is~ =S(to)e (4)

Thus, the inclusion of absorption aff'ects S as if the loss
mechanism acts during the time T(to). However, as was
shown before, T is not the classical time delay, and is

subject to wave-mechanical corrections, most notably the
factor-of-2 enhancement due to time-reversal symmetry.
Only in the many-mode limit is this enhancement negli-

gible, and we regain the classical behavior.
The analysis presented above was tested by comparing

the measured reflected power lSl with exp[ —2aT(to)],
where T(co) was obtained from the measured phase
@(co) by numerical diff'erentiation according to (2). The
results are shown in Fig. 4. Only a limited frequency
range is shown so that details can be seen. One can see
that there is great similarity between the two quantities.

Fig. 3, where the reflected power lSl as a function of
frequency is shown. One observes an average value of
0.7, with sharp deviations. This behavior is due to ab-
sorption of energy because of the finite conductivity of
the cavity walls. This eÃect can be modeled by adding a
small imaginary term a to the frequency. In Fig. 3 we

compare the experimentally observed distribution of lSl
(solid line) with that of a numerical simulation (dashed
line), taking a=0.013. The simulation reproduces all
the features of the measured distribution within the ex-

perimental accuracy. Note that the absorption taken is

quite small (a factor of e ' for every 38 m), but still has
dramatic consequences for the distribution of lSl . The
smallness of the ratio a/y (=0.13) explains why !S(t)l

and C(Bto) are only marginally aFected by absorption.
We can understand the dependence of !S(to)l on co

by making use of the analyticity of S(to) [and of 4(to)]
in a strip around the real axis. Because of unitarity,
4(to) is real on the real axis, and

Diff'erences arise near sharp dips because the numerical
differentiation is not accurate there. However, the simi-
larity extends over the whole frequency range, and the
correlation between the two quantities is -0.8. An ad-
ditional result is the average time delay, which was cal-
culated from the experimental data to be —19, in good
agreement with the predicted value 2y ' = 20.

This work demonstrates the utility of microwave ex-
periments in the study of quantum chaotic scattering. In
a way, it complements the work on spectral fluctuations
of eigenfrequencies of chaotic billiard systems described
in Ref. 10. Our results show that fluctuations of the S
matrix for chaotic wave scattering can be described in

terms of semiclassical arguments, based on the chaotic
nature of the underlying classical dynamics. The effect
of absorption in chaotic scattering was also studied, and
the total energy loss was shown to be linked to the
Wigner time delay. A predicted wave-mechanical
enhancement of the classical time delay as a result of
time-reversal symmetry was also confirmed here. The
semiclassical considerations leading to the results
demonstrated in this Letter can be extended to the fluc-

tuating behavior of the S matrix under a change of
geometry, magnetic field, or other parameters. '' Such

effects are relevant to experiments on ballistic transport
of charge carriers in mesoscopic systems. Recent experi-
ments' ' and theoretical work' ' on the variation of
the magnetoconductance of miniature junctions have
shown that the gross features observed are due to classi-
cal effects. The fluctuations described here occur on a
finer scale (5-30 mT), and further experiments at this
field resolution are called for. When this work was in its
final stages of preparation we received a paper" where
numerical simulations indeed show these fluctuations and
their relation to the underlying chaotic scattering. A
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prediction not tested here was the connection between

the statistics of the S matrix and random-matrix
theory. ' A study of this link necessitates measuring 5
matrices of dimensions larger than 1, and work to this
end is in progress now.
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