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Extension of the Kasteleyn-Fortuin Formulas to Directed Percolation
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It is shown that the pair connectedness for percolation on an arbitrary directed graph may be obtained

by setting A, =1 in the transmissivity function for a k-state chiral Potts model, the odd-flow model, and
that the pair connectedness of the dual percolation model is expressible in terms of the correlation func-
tion of a second chiral Potts model, the odd potential-diA'erence model. There is an important distinction
between odd and even X, and only those models with odd X exhibit chirality. The duality relation between
the transmissivity and correlation functions leads to a duality relation for pair connectedness of directed
percolation theory which extends the result of Dhar, Barna, and Phani for percolation probabilities.

PACS numbers: 05.50.+q

Kasteleyn and Fortuin ' related bond percolation
theory on an arbitrary undirected graph G to the statisti-
cal mechanics of interacting spins via the A, -state Potts
model. In particular, they showed that setting A, =l in

the Potts model correlation function gave the pair con-
nectedness function of percolation theory. This relation
has been fundamental in allowing the cross fertilization
of ideas between the two subjects and placed percolation
models in the general context of critical phenomena
theory. One of the more important consequences of the
result was that it enabled the exact values of the critical
exponents associated with the pair connectedness on the
square lattice to be obtained by substituting X =1 in the
formula for the Potts model exponents.

Numerical values of the corresponding critical ex-
ponents for directed percolation have been accurately
calculated and are clearly distinct from those of the un-

directed problem, yet no exact values have been ob-
tained. There has also been considerable recent activity
in obtaining exact results for chiral Potts models which
has led to new exponent values. The connection
developed here between such models and directed per-
colation is a natural extension of the Kasteleyn-Fortuin
result for undirected percolation. It is hoped that this
link will enable the exact exponents associated with the
pair connectedness for directed percolation to be found

by methods akin to those for the undirected problem.
Cardy and Sugar have shown that the pair connect-

edness for directed percolation may be obtained from the
correlation function of a lattice model which, in the con-
tinuum limit, is in the same universality class as Reggeon
field theory. This connection was important since it al-
lowed the existing scaling theory, epsilon expansion, and
numerical estimates of critical exponents for Reggeon
field theory to be taken over for directed percolation.
However, no exact values for critical exponents have
been forthcoming by this route. The standard Potts

model leads to a field theory, the fields of which have
X —

1 components in contrast to the single component of
Reggeon field theory. The restriction to odd flows and

potential diff'erences in our modified Potts models will, in

the continuum limit, lead to new field theories which

may be of interest in their own right as extensions of
Reggeon field theory. Another difl'erence between our
work and that of Cardy and Sugar is that it applies to
arbitrary directings and includes cyclic directings in ad-
dition to the standard directing in which all arcs have a
positive component parallel to some preferred axis.

The simple extensions of the Potts model described
here have much in common with the standard chiral
Potts model and their study may provide information
about the latter using universality. Even in the absence
of exact solutions it will be possible to obtain much

longer series expansions than for the standard chiral
model since the expansion coefficients are flow polyno-
mials. Nicolaides' has pointed out to us that the
Kasteleyn-Fortuin relation for undirected percolation has
been used to speed up Monte Carlo simulations of the
standard Potts model. He is planning to use our results
to carry out similar simulations for chiral Potts models.

The interacting spin model we consider is a special
case of the so-called Z(X) model which is defined for
our purposes on the directed graph H, having vertex set
V and arc set A, as follows. With each vertex i of V we

associate a state variable n;, called its potential, which

takes on the X values 0, 1, . . . , A,
—1. The Hamiltonian

may be written in terms of the dimensionless interaction
function h, for the arc a =(i,j ) in the form, see Ref. 10,

P =ktt T g h, (n~
—n; ), (1)

aEA

where the potential diA'erence n~
—n; is calculated

mod —
X, and therefore P has Z& symmetry. The proba-

bility that vertices 1 and 2 are in states nl and n2 de-

l

pends only on the difference n2 —n mod( —k). For1

P =0, . . . , k —1, we therefore define

i —
1 n.

—
1

Up(1, 2;X,H) =Prob(nq —
n~ =p mod( —k)) = g g 6&(n2 —

n~
—p) + e

Z(&, H) n, =o n„=o a 6 A
(2)
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where v=iVi, Bq(a) =1 when a=o mod( —k) but zero
otherwise, and the partition function Z(X, H) is defined

so that

g Up(1, 2;A. , H) =1.
P=0

(3)

If all the interactions are zero then Up(1, 2;k, H) has a
value I/X for any P and the efl'ect of the interaction is

measured by the correlation function

I p(1, 2;k, H) =Up(1, 2;A, ,H) —I/X.

Finally, we define the equivalent transmissivity vector
T,(1,2;X,H) by the discrete Fourier transform

colation, the subgraph H', with vertex set V and arc set
A', partitions the vertices into clusters (connected com-
ponents). The random variable rp is the number of clus-
ters in a given configuration of open edges and yi2 has
value 1 or 0 depending on whether or not the vertices 1

and 2 belong to the same cluster (i.e., there is a chain of
open edges linking the vertices 1 and 2 in A').

More recently, Essam and Tsallis'' showed that for
the standard Potts model the Kasteleyn-Fortuin formulas
could be rewritten in terms of an edge transmissiv-
ity variable t, F.or the general Z(X, ) model the arc
transmissivity t, (a) for the arc a is defined by (S) with

H, being the graph consisting of the single arc a. In this
case

A,
—

1

T, (1,2;X,H ) = g e "'P Up(1, 2;X,H )
P 0

(s) Up(1, 2;k, H, ) =e ' /Z, , (i 3)

and from (3), Tp(1, 2;X,H ) = l.
The pair interaction function h, (ni —n; ) of the stan-

dard Potts model has only two values depending on
whether vertices i and j are in the same state or difl'erent

states; thus

where

k —
1

Z g —h, (a)

a 0

With this definition t„(0)=1 and'

(i4)

h, (a) =' 0, a=0,
XK„a~0 (6) T.(1,2;),H) = g + t. (((( )),

D k, H yE 7.,(H)a C A

(is)

(the factor )I, is included for consistency of notation with

the usual Ising model which is given by )(. =2) and the
functions I p and T, defined above are independent of the
directing of H and also have only two values depending
on whether the subscript is zero or not zero,

rp=r for pro

and

T, = Ti for a&0.

where P, )(H) is the set of integer mod( —X) rooted
flows on H with an external flow of a in at vertex 1 and
out at vertex 2 (i.e., a flow with value in the range
0, 1, . . . , A.

—
1 is assigned to each arc of H such that the

flow into any vertex is equal, mod( —k), to the outward
flow). The denominator D()(., H) is such that Tp(1, 2;
A. , H) =1 and is given by a similar sum to that of (1S)
over the flows P), (H) =Spy(H) having no external flow.
This result is an extension of earlier work of Biggs, '

who showed that
For this model, Kasteleyn and Fortuin have shown that

Z(X,H) =k' ' g Z, Do(„H), (16)
Z(X,H) =(k")

pa =1 —e

and

r, (1,2;z, H) = (y) 2x")

(k") t.=)-e "
or, equivalently,

(9)

(io)

,a E A

where e is the number of edges in H.
For the standard Potts model it follows from (6) that

for a) 0,

t, (a) =t, —= (1 —e "')/[I+(X —1)e ' '] .

The result corresponding to (9) is, see Ref. 11,

((1 —y)2)) ")
U) (1,2;)(., H) =-

()j. ) pa 1 e

Here (x)~ denotes an undirected bond percolation aver-

age of the random variable x, where p, is the probability
that the arc a is open, and is given by T)(1,2;&,H) =((y)2~ )/(~ ))p =i. . (i9)

D(X,H) =(X')

The random variable c is the cycle rank of the subgraph
H' of H formed by the open bonds. Similarly, it was
shown in Ref. 11 that instead of (10),

(H') + p, + (1 —p, ).
A'C A a GA' aGA(A'

(i 2)

In this percolation model the direction of the arcs is ig-
nored and an open arc (i,j) allows fluid to percolate
from i to j, or from j to i. As is usual in undirected per-

Setting )(. =1 we obtain from (11), (17), and (19)

T) (1,2;)j. =1,H) = 1 U) (1,2;X = 1,H)

=(y) 2)
p, =l —e

(2o)

(2i)
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which is the pair connectedness for undirected percola-
tion with probability 1

—e ' that the arc a is open.
These results are now extended to directed percolation.

We consider first a difl'erent Z(X) model whose

transmissivity is expressible as a directed percolation
average. The model is defined via its arc transmissivity

by

1, a=O,
t, (a) = t„aodd,

0, a even,

(22)

where the flow a is directed parallel to a, and will be
called the "odd-flow model. " If X is even, the functions

Up and T, are again unchanged by reversing an arc since
a and X —a have the same parity. ' This contrasts with

the odd-X case for which a and X —a have different pari-

ty and Up and T, become dependent on the directing of
H. For odd-X, the model defined by (22) is therefore a
chiral Potts model. The function h, (a) for this model,
obtained from t, (a) by inverting the Fourier transform

(5), has complex values and the resulting Hamiltonian is

non-Hermitian. We note that X' in (18) is the num-

ber of integer mod( —k) flows on H' with no external
flow and for the odd-flow model it may be shown that
Eq. (18) is replaced by

D(x H) -&
I
&~~'1 &p. -». , (23)

where Pi (H') is the set of these flows which are zero
or odd for each a 6 A'. It may also be shown that the
equivalent vector transmissivity of this model is given by

7'.(1,2;&,H ) =«l&~'I&/& l&i~'1&),.-». , (24)

where now P~~ (H') is defined in the same way as

P~ (H') but with an external flow a. The values of
lP& (H')l for odd A, ~ 3 may be interpolated by a poly-
nomial F' (X,H') of degree at most c(H). ' The same
is also true for even-X values but a different polynomial
is required, and we subsequently restrict attention to the
chiral model with odd X. lP, &

(H')
l is similarly interpo-

lated by a polynomial F, d(X, H') and it is shown in Ref.
14 that

We emphasize at this point that the expression lV;i l

used to obtain the transmissivity in (24) has no obvious
meaning when k=1. However, if in (24) we replace
l9'. q l by the interpolating polynomial F,(k, H), ob-
tained for odd k~ 3, and then set 1, =1, we obtain (27)
by making use of the polynomial properties (25).

The extension of (20) is not so straightforward and re-

quires consideration of the dual directed percolation
problem of Dhar, Barna, and Phani. ' In their DRP
model, the arc a =(i,j) is open in both directions with

probability p, but with probability 1
—p, the fluid can

only percolate from i to j (i.e., is open parallel to the
direction of the arc a). As usual the pair connectedness
is the probability of finding an open path from 1 to 2 and
will be denoted by C|*2(p„H). If there is a directed path
from 1 to 2 in H then C~2 has the value unity for all p,
just as the normal pair connectedness is identically zero
when there is no such path. Percolation averages for this
model will be denoted by & &p and are defined as in

(15) but now the graph H' corresponding to the arc set
A' is obtained from H by replacing the arcs of A' by un-

directed edges. Thus H' is a partially directed graph.
We note that for the general Z(k) model, in analogy

with (15),

Up(1, 2;k,H) = g Q w, (bn(a)), (28)
1

n E P»»», (H )»» c rl

Pg(H) = U Pp, g(H),
p ~P

(30)

the set of potentials with no external constraint.
In order to extend (9) and (10) to directed percola-

tion, we now consider a further case of the Z(k) model

in which

where Pp», (H) is the set of state potentials such that
ni n~ =P mod—( —k), 8n is the potential difl'erence ob-

tained from the potential n, and

w, (a) =e (29)

The partition function Z(X, H) is given by a similar sum-

mation with Pp», (H ) replaced by

F (1,H') =1 and F~l (1,H') =trip(H'), (25)

where

1, if there is a directed path from 1 to 2 in H',
»r 1 2 (H')

0

1, a=O,

w, (a) ='e ', a odd,

0, otherwise.

(31)

Thus, setting a, A, =1,

T» (1,2; I,H) =&n»2&»,.-» =C|2(t.,H),

(26)

(27)

the pair connectedness for directed percolation, with

probability p that the arc a is open, thereby extending
the result (21) for the undirected model.

We call this the "odd potential-diff'erence model" or
"odd PD model. " As for the odd-flow model, when X is
even the functions Up and T, are again unchanged by
reversing the directing of any subset of the arcs of H,
whereas when k is odd they become dependent on the
directing of H which gives rise to a second chiral Potts
model this time with a real Hamiltonian. It may be
shown that for the odd potential-diff'erence model Eq.
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(9) is replaced by

(32)

where, for a configuration in which the arcs A'L: 8 are
open, Pq (H') is the subset of Pq(H) such that the po-
tential diff'erence is zero for a 6 A' (i.e., on the undirect-
ed edges of H') and is zero or odd for a g 2'. For P & 0,

of H be joined by an additional arc (2, 1). Let 1* and 2
be the roots of the dual graph H* corresponding, respec-
tively, to the finite and infinite faces formed by the addi-
tion of the arc (2, 1). Then the arcs (2, 1) and (2*,1*)
are dual arcs and form a clockwise pair.

Setting X= 1 in (36) and its rooted analog and using
(24), (31), and (35), we obtain

(33) C[.2. (p„H*)=1 —Ci2(1 p„—H), (37)

P (1,H') =1 and P~ (I,H') =1 —x~2(H'), (34)

where H' is the partially directed graph defined above,
and it follows that

where the definition of Ppq (H') is similar to that of
P&~d(H') with the additional condition that nz —

n~ =p
mod( —X). The values of ~P& (H')~ for odd X~ 3 may
be interpolated by a polynomial P (7,H') of degree at
most v, see Ref. 14, which takes the place of X in
(9). ~Ppz (H')~ may also be so interpolated and we
denote the interpolating polynomial by Pp (X,H'). It is
shown in Ref. 14 that

which extends the Dhar, Barna, and Phani' result for
the percolation probability to the pair connectedness and
to arbitrary dual pairs of planar graphs. Also this equa-
tion may be obtained without considering the Z(X) mod-
el by using the correspondence between configurations on
H and H* in which a closed edge of H corresponds to a
two-way open edge of H . If H' is the partially direct-
ed graph corresponding to the subgraph H' then there is
directed path from 1 to 2 on H' if and only if there is no
such path from 1 to 2 on H' and hence z, .2.(H'*)
=1 —z~z(H'). Equation (37) follows by noting that if
p, is the probability of a two-way open edge on H, then
using the correspondence between configurations the
probability of an open edge on H is 1 —p, .

=1 —C~2(1 —e ',H), (3S)

a
(36)

where the starred average is calculated for the dual
graph H*. We can therefore realize the dual flow model
as a potential model with an appropriate connectivity.
This duality result for the partition function may be also
extended to the transmissivity and correlation functions
since (36) is also valid for P, q and V; q provided that
the roots 1* and 2* are chosen as follows. Let the roots

which is the pair disconnectedness function for the dual
directed percolation model.

Flows and potential differences are dual structures.
For every flow on the directed plane graph H, there is a
corresponding potential difference on the dual directed
graph H . ' Each arc a of H induces a dual arc a* on
H* such that tz* is obtained from a by a clockwise rota-
tion through a right angle. The corresponding flow p
and the potential difference Bn satisfy p(a) =Bn(a*).
This gives a one-to-one correspondence between flows
and potential difl'erences on H and H*.

Biggs' has used this correspondence to obtain a duali-
ty relation for the partition function for the general Z(k)
model. The two chiral Potts models considered here
form a dual pair in the sense of Biggs which implies that
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