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Degenerate perturbation theory, without geometrical tools, directly yields vector potentials in the

Born-Oppenheirner approximation. The derivation uses only the algebra of the dynamical operators, and

the slow variables need not commute.

PACS numbers: 03.65.—w, 31.30.—i

The Born-Oppenheimer approximation' is a standard
tool for problems in which the Hamiltonian of a fast sys-
tem depends on the coordinates of a slow system. In

some textbooks, the problem is solved by freezing the
coordinates of the slow system and solving the Hamil-
tonian of the fast system; then the energy of the fast sys-

tem enters the eA'ective Hamiltonian for the slow system
as a potential-energy term. Mead and Truhlar found
this solution to be insufficient: A vector potential must
be inserted to adjust for the separation of the system into
two parts. A general form for this vector potential was
derived by Berry. Even with the vector potential in-

cluded, however, errors and unjustified approximations
are sometimes made. We have found a conceptually
simple and direct approach to solving the Born-
Oppenheimer approximation. We treat the problem via
degenerate perturbation theory and solve it by modifying
a subset of the operators, without introducing trial wave

functions. In this approach, no geometrical tools are
needed. The application of degenerate perturbation
theory leads to an inhomogeneous set of linear equations,
the solution of which contains the desired vector poten-
tial.

For the sake of clarity, we begin with a simple exam-
ple exhibiting Berry's phase. The model consists of a
spin- 2 particle, cr, which sits in a strong magnetic field

8 pointing in the direction n. While Berry treated the
direction as a slow-moving parameter, we will take a set-
ting appropriate to the Born-Oppenheimer approxima-
tion. In this setting n is a dynamical quantity repre-
senting the direction of a second, massive particle.

The complete Hamiltonian can be divided into two

parts, a fast one P
~

and a slow one "P2..

P =P(+/f2,
where

and the momentum P is conjugate to r. If 9M is very

large, we can treat the problem in degenerate perturba-
tion theory, where )Vi is taken to be the degenerate
Hamiltonian and P2 the perturbation. Following the
procedure of degenerate perturbation theory, we start by
finding the eigenvalues of P~, which are ~%. The
eigenvectors with the same eigenvalue form a subspace.
We can form projection operators to project onto the two
subspaces:

(3)

Here ~r, + ) (~r, —)) represents an eigenstate of both
operators r and r a, sharp in r and (anti)polarized along
r. As r has a continuum of eigenvalues, the two sub-
spaces are infinitely degenerate. The next step in solving
the degenerate perturbation problem is to diagonalize
the perturbation in the subspaces, projecting with the
operators H;, i = ~. Since P does not commute with H;,
we should expand the perturbation as follows:

rr, P'rr, =n, pn Pn, +rr;Pn Pn, .

This expression is awkward because P has a part that
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causes transitions between subspaces. A way to simplify
it is to decompose P into two parts: One part, P —A,
acts only within a subspace, while A causes transitions
between H+ and H

[P —A, II, ] =O. (5)

Indeed, since P —A is the diagonal part of P, we have, in

general,

P —A =+II,PII, , (7)

where the sum is over all subspaces i, and so for any
number of levels

A =P —+II;PII, = —, +[II,, [Ii;,P]] .

Inserting (3) into (8), we obtain A=nxa/2r. Suppose
that we are searching for solutions in the subspace of H+
only, the eff'ective Hamiltonian to be solved is then

There is some ambiguity in A which can be removed by
requiring

n;An; =O.

method is efficient, since the projection operators can be
immediately written in terms of the Hamiltonian. More-
over, our result for 8; immediately extends to all spins,
with cr/2 replaced by the matrices for any other spin rep-
resentation. One can check that the commutation rela-
tion (5) does not depend on a particular representation,
and the definition (8) of A in terms of the Hamiltonian
always yields vanishing matrix elements between degen-
erate states. Once (5) is verified as an algebraic identity,
the form of A is guaranteed to be independent of the
representation.

This derivation of A and its algebraic definition are
our main results; however, A itself has appeared in the
literature before. In the work of Messiah it generates a
"rotating-axis representation" of eigenstates. A is not
Berry's form of the vector potential, but it generalizes
the operator J defined by Stone and Goff in their dis-
cussion of Berry's phase and anomalies. It may seem
strange that Berry's phase, which is relevant to the case
of no level mixing, can be generated by an A which does
nothing but mix levels. Although A connects subspaces
with diferent energies, the field strength can be written

1 2 1

2M
II P 11 = II (P —A+A) II

2M
F,, = t[P, A;, P-, A-,]- (i2)

II (P —A) II (P —A) II1

+ ~+An ArI+
1

2M

and the operators P; —A;, P~
—

A~ operate within each
degenerate subspace (by definition). Therefore F;, is

also diagonal in the degenerate subspaces. To compute
field strengths it is often convenient to use a short cut:
The commutator of A; and A, is

(P —A) 'II++ II+A'II . (9)1 2 1

2M 2M [A„A, ] = P, —+II„,P, II.„P,—+II„P,II„ (i3)
Within the subspace of H+, the Hamiltonian becomes

r ' 2

1
p

nxa 1

2M 2r 4M''
(io)

The second term is usually not mentioned. The first
term describes a particle moving in an SU(2) vector po-
tential; the field is

+i 2 eijkFjk ~2
eijk ('tI[jAk] t [Aj&Ak])

A

(cr n),
2I'

with o" n= 1; hence B= —n/2r . By solving a set of
equations on the relevant operators we have obtained the
effective magnetic monopole found by Berry. It is

amusing that the U(l) monopole appears here in a non-

Abelian representation; it has no string and is singular
only at r=0.

Although we have found the solution for a simple ex-
ample, the algebraic approach is quite general. In par-
ticular, Eqs. (5) and (6) are general conditions for deter-
mining A, and Eq. (8) always provides a solution. In

practice, it is not always convenient to obtain explicit ex-
pressions for the projection operators, but they are often
not needed, as we show below. For two-level systems the

and if we look only at the diagonal elements of the com-
mutator, we find

&II„[A„A,]II„=— &II„,P, II„„+II„P,II„

= —[P; A;, Pj —Aj] =——iFij. (i4)

i(m
l Aln) =(m It)in) . (is)

The right-hand side is just the component of l)ln) along
lm). The requirement that A have vanishing diagonal
elements implies parallel transport of the phase of the
state ln). If we now regard the slow variables as slowly
changing external parameters, then A generates changes
in a state ln) induced by its dependence on the slow pa-
rameters. Thus

i hr'hr j(n
l [A ', A ~]

l
n ) = jt r'hr~&n

l
Fj l

n)

It is enough to compute either +II„[A;,A, ]II„or
+II„(8;A,—|I,A;)II„; the other part is obtained from
this formula. The field strength computed this way coin-
cides with Berry's formula.

To see the connection with Berry's phase, note that
0=(mlII„, (P —A)II„ln) =&mlP —Aln) for m&n Then.
A is seen to transport states:
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is the Berry phase acquired by the state when the param-
eters r make a slow infinitesimal loop hr'hr'.

Moving to a new example, let us examine the motion
of a particle in a strong magnetic field. ' The scaled
Hamiltonian can be written in the form

'i%= —. &[(p, ——, y)'+(p, . + —, x)'],
where 0 is the Larmor frequency. By defining ' '

P =p, ——, y, Q =p, , + —, x, and [Q,P] =i,
we have the Hamiltonian of a harmonic oscillator:

e=-,' n(P'+Q').

(16)

(17)

The eigenstates of this Hamiltonian are the Landau lev-

els, which have infinite degeneracy, depending on the lo-
calization of the state. The coordinates which specify
the localization are noncom muting; so this example
diA'ers from the previous one, in which the degeneracy
was indexed by the commuting components of r. To this
Hamiltonian we add a perturbation, V(x,y). This po-
tential should be projected onto a subspace of P, for ex-
ample, via the ground-state projector Hg. Here, rather
than writing down projection operators for the eigen-
states, our strategy will be a little diAerent. We will look
for a part A to subtract from x and y, such that x —3„
and y

—AJ will commute with P. Afterwards we will

check that A does not connect states within a degenerate
subspace. To find the 8, and 8,, which accomplish this
projection for us, we solve the double set of equations

[x -W„,II,] =[y -W, ,n, ] =O,

n w„n =n w, , n =o.
The solution is

A„=Q and A, ,
= P. — (2o)

V=x +y-', (21)

we end up with a Hamiltonian for a harmonic oscillator

V =(x')'+(y')'+1,
and if it is

V =cos(Px),

(22)

we have a Hamiltonian which causes a jump in the y'
direction:

V =exp( —P /4)cos(Px') . (24)

It is easy to check that the projection HgAHg vanishes,
as desired, because Q and P are sums of raising and
lowering operators. The eA'ect of A is not a magnetic
monopole or flux but a redefinition of the coordinates
from x and y, which commute, to

x' = —' x —p, and y' = —'y+ p, ,

with the commutation relation [x',y'] =i If the pertu. r-
bation is

Note that even powers of A contribute. This result is
not contained in the usual formulation of the Born-
Oppenheimer approximation, since the coordinates in-

dexing the degeneracy do not commute and therefore
cannot be treated as parameters in the usual sense.

In conclusion, we have seen that a vector potential ap-
pears naturally when a perturbation is constrained to act
within a degenerate subspace of a free Hamiltonian. In
calculating this vector potential there is no need to con-
sider the intrinsic geometry of the problem; the deriva-
tion simply diagonalizes the perturbation within degen-
erate subspaces, and then the vector potential is obtained
as the solution to an algebraic problem. The solution has
been given explicitly in terms of projection operators
onto the subspaces. The condition imposed by Eq. (6)—no transitions among eigenstates of the fast Hamil-
tonian 'iV~ —is precisely the adiabatic approximation.
However, the appearance of a vector potential need not
be limited to this approximation. ' An extension of the
algebraic approach to the nonadiabatic regime is indicat-
ed in a longer version' of the present work, which con-
tains further examples of the algebraic method, includ-

ing non-Abelian phases, anomalies in field theory, and
the classical version of the Born-Oppenheimer approxi-
mation and Hannay's angle. '
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