
VOLUME 65, NUMBER 24 PHYSICAL REVIEW LETTERS 10 DECEMBER 1990

Chaos in the Low-Lying Collective States of Even-Even Nuclei
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We study the fluctuation properties of the spectrum and the electromagnetic E2 transitions of low-
lying collective states in even-even nuclei. Using the framework of the interacting-boson model we dis-
cuss the transition between rotational and y-unstable nuclei. Near those two limits the system exhibits
regular behavior but in the transition region it shows chaotic behavior, where the fluctuations are charac-
terized by the Gaussian orthogonal ensemble. Analysis of the classical mean-field dynamics of the five
nuclear quadrupole shape degrees of freedom confirms the quantal results.
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Random-matrix theories' (RMT) have been useful in

the study of the Auctuation properties of neutron reso-
nances in heavy nuclei. Their use was justified by the
complexity of the nuclear system and the large numbers
of degrees of freedom. In recent years, however, it was
conjectured that the validity of random-matrix theory
can be extended to quantal systems with few degrees of
freedom when the underlying classical motion is chaot-
ic. ' In particular, the Gaussian orthogonal ensemble
(GOE) of random matrices has been associated with
chaotic systems which are time-reversal symmetric. The
conjecture was confirmed in numerous studies, mostly of
model systems in two degrees of freedom.

On the experimental side, the most complete data
available are the nuclear data ensemble (NDE) consist-
ing of neutron and proton resonances. These resonances
are in regions of high nuclear level density and are con-
sistent with the GOE predictions. The question which

arises is whether such a chaotic behavior could prevail
also in the low-lying collective part of the nuclear spec-
trum. Experimentally known low-lying levels in various
nuclei were analyzed in Ref. 7. Because of the small

sample, it was necessary to group together levels with
diff'erent spin-parity and only partial conclusions could
be reached.

The purpose of this Letter is to study the transition
from regular to chaotic motion in low-lying collective
states of nuclei by using a realistic theoretical model.
With few exceptions, such as that of Rydberg atoms in

strong diamagnetic field, most of the model problems
studied in quantum chaos were unrealistic. It is impor-
tant to investigate whether the signature of quantum
chaos observed in the two-dimensional systems also pre-
vails in realistic nuclear models where the number of
relevant degrees of freedom is larger than two but still
much less than that of the compound nucleus ( —100)
where the neutron resonances were observed.

Most studies of quantum chaos were restricted to the
fluctuation properties of the spectrum alone. A study of
transition intensities provides an additional probe. ' In
the present Letter we study simultaneously the fluctua-

tions of the spectrum and of the electromagnetic E2
transitions.

A complete understanding of the character of the dy-
namics requires the study of the classical limit. This is
considerably more difficult in our case than the usual
two-dimensional studies since the number of degrees of
freedom is five, corresponding to the five nuclear quadru-
pole shape parameters. Nevertheless, we are able to ac-
complish such a study using Monte Carlo techniques.
The classical limit here is also diA'erent from most other
studies in that it actually describes the mean-field evolu-
tion of the many-body quantal system.

The model that we use is the interacting-boson mod-
el'' (IBM). It is suitable, in particular, for our study
since it provides realistic spectra and electromagnetic
transition intensities, yet as an algebraic model it is rela-
tively simple to solve. Algebraic models have another
property which is particularly useful here. The com-
pletely integrable Hamiltonian (for which the motion is

necesarily regular) is relatively easy to identify as the
one which possesses a dynamical symmetry. Such a
symmetry occurs when the algebraic Hamiltonian 0 can
be expressed as a function of Casimir invariants C of a
chain of subalgebras of the original algebra 6:

H =aC(G) + a'C(G') +a"C(G")+

G ~G'~t""o

U(s) ~o(s) (I)
U(6) & ' SU(3) 'Do(3) (II)

o(6) ~o(s) (III)
(2)

These Casimir invariants form a set of constants of the
motion in involution. If this set is not complete, there
are missing labels which can be related to invariants of
subalgebras which are not Casimir invariants. With
these invariants we obtain a complete set of constants
and the system is completely integrable.

The interacting-boson model where G:—U(6) has three
such dynamical symmetries''
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Chain (I) describes vibrational nuclei, chain (II) rota-
tional nuclei, and chain (III) t-unstable nuclei. In this
paper we shall study a family of Hamiltonians which
correspond to a transition between chains (II) and (III),
describing deformed nuclei which are gradually becom-
ing softer in the y direction:
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In (3) L is the angular momentum and Q» is a quadru-
pole operator,
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which depends on a parameter g. Eo, c~, and c2 are con-
stants. When g = —K7/2 we get the SU(3) Hamiltonian
and when @=0we obtain the O(6) one. The E2 transi-
tion operator '' is taken to be proportional to Q»,

T(E2) =a2Q». (5)

We have studied the chaos of the spectra and the E2
intensities as a function of g, for several fixed values of
the spin-parity. A study of spectral fluctuations alone
using the IBM in the SU(3) and O(6) limits was
presented in Ref. 12 but did not include the transition re-
gion.

We have used two statistical measures to determine
the fluctuation properties of the unfolded energy lev-

els: ' the nearest-neighbor level-spacing distribution
P(S) and the d3 statistics of Dyson and Metha. The
level spacing is expected to be the Poisson distribution
P(S) =e for a regular system and the Wigner (GOE)
distribution P(S) =(z/2)Sexp( —zS /4) for a chaotic
one. The h3 statistics measures the spectral rigidity. For
the Poisson statistics 53(L) =L/15 and for the much
stiffer GOE spectrum we have for large L, hi(L)
= x lnL —0.0007. We have analyzed levels within
each spin-parity class of the model (3) for J'=0+, 2+,
3+, . . . , 8+ using N=20 bosons. Figure 1 shows for
several values of g the level-spacing histograms and the
A3 statistics for the 1 2 1 levels with J=8 +. We have
fitted the level-spacing distribution with a Brody distri-
bution ' (solid lines) of the form

P„(S)=AS"exp( —aS'+ ),
where a and 8 are chosen such that P is normalized and
(S)=1. The distribution (6) describes intermediate situ-
ations between the Poisson (r0=0) and Wigner (co =1)
distributions. We see that near the two dynamical-
symmetry limits g= —K7/2 and @=0, the behavior of
P(S) and 63(L) is close to Poisson, as it should be for
integrable systems. However, as g moves away from
those two limits the statistics changes gradually to the
GOE one, which indicates the onset of chaotic motion.

The intensity distributions ' can oAer a more sensi-
tive probe. We have analyzed E2 transitions following
the procedure of Ref. 10. The B(E2) value between an
initial state i and a final state f, which we denote by y, is
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FIG. 1. The nearest-neighbor level-spacing distribution
P(S) (histograms in the right-hand column), the Dyson-
Metha lL3 statistics (dots in the middle column), and the
B(E2) distribution P(y) (histograms in the left-hand column)
of the J=8+ states for several values of the parameter g,
describing the transition from rotational nuclei (g= —J7/2) to
y-unstable nuclei (@=0). The corresponding Hamiltonian is
(3) with c~ =0 and c» = —0.1, the number of bosons is N =20,
and the E2 operator is (5). The dashed lines describe the GOE
limit (Wigner) and the dash-dotted lines are the Poisson distri-
bution. The solid lines (in the right-hand column) are the best
fits with the Brody distribution (6) with the cu quoted. In the
left-hand column Iof P(y)l the dashed lines are the Porter-
Thomas distributions (8) which have the same (y). Notice that
a logarithmic scale is used for the E2 intensity y. The solid
lines are the best fit with the g' distribution (9) in v degrees of
freedom.

given in terms of the reduced matrix elements of T(E2):

y-=&«2;i-f) = l(fIIT«»lli)l'.2J+1
We have analyzed E2 transitions J J within a given
spin-parity class. To separate the nonuniversal smooth
behavior of 8(E2) with energy we divide each y by an
average intensity calculated' using Gaussians of width y
centered around each unfolded level. The renormalized
intensities (denoted also by y in the following) are then
used to construct histograms of their distribution P(y)
such that P(y)dy measures the probability to find an in-
tensity in the interval dy around y.

The GOE prediction for P(y) is the Porter-Thomas
distribution

P(y ) =(2»r(y)) '~ exp( —y/2(y)) .

To describe deviations from the Porter-Thomas distribu-
tion, we use the g distribution in v degrees of freedom
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(v & 0) introduced in Ref. 9,

P„,(y) =Ay"' ' 'exp( —vy/2(y)), (9)

The semiclassical limit' of the IBM is a mean-field
approximation where 1/N plays the role of h and is ob-
tained by using boson condensates

with A =(v/2(y))' /I (v/2). For v=1 we obtain the
Porter- Thomas distribution.

The left-hand column of Fig. 1 shows the distributions
P(y) (histograms) for the 8+ 8+ E2 transitions
(there are 7260 such transitions). The dashed lines are
the Porter-Thomas distributions which have the same (y)
as the actual distributions. The best fits with (9) are the
solid lines. Notice that we have used a logarithmic scale
for the intensities y since the weak transitions range over
several orders of magnitude. In Ref. 10 it was found
that when the system becomes more regular the value of
v decreases from 1 towards 0. In Fig. 1 we see that near
the SU(3) and 0(6) limits, where the nuclear dynamics
is regular, v obtains small values (=0.3). Indeed in

these limits there are selection rules which make a few
allowed transitions large and many others forbidden.
For example, in the SU(3) limit only E2 transitions be-
tween levels which belong to the same SU(3) representa-
tion are allowed. Near the limits these forbidden transi-
tions are very weak and as a result the distribution is rel-
atively broad with a wide range of weak transitions. For
intermediate values of g, the E2 distributions get closer
to the Porter-Thomas one and the maximal v=0.7 is

obtained for g= —0.6. Thus there is a strong correla-
tion between the spectral fluctuations and the intensity
fluctuations. However, even for g= —0.6 the 8(E2)
distribution shows deviations from the Porter-Thomas
one. This means that the motion is not yet completely
chaotic. Indeed the character of the dynamics can be en-

ergy dependent. A study of the classical limit is capable
of providing information on this energy dependence.

Ia) =exp( —
I aI /2)exp a,s +g a„d„I0) .

P i
(10)

The six complex numbers a together with I.a* are then
canonical-conjugate variables for the classical Hamil-
tonian 'iY=—(aIHIa). The boson-number conservation
a,*a,+Pa„*rr„=Nis a constraint which eA'ectively re-
duces the number of degrees of freedom to five. These
are the five nuclear quadrupole shape parameters. The
classical limit is obtained for N

We have used Monte Carlo techniques to determine
the fraction of the chaotic volume o of a given en-
ergy-angular-momentum surface in phase space. A
chaotic trajectory is characterized by a positive maximal
Lyapunov exponent A. , while a regular trajectory has
X=O. Figure 2 shows a classical phase diagram in the
g-e (energy per boson) plane for spin J=8. e;„repre-
sents the lowest possible energy for a given value of g.
The other two solid curves are contours of o =0.1 and
0.9, separating the regular regime (o &0.1) from the
completely chaotic one (o & 0.9). Near g = —J7/2 and
g=O the classical motion is regular at all energies. In
the intermediate regime ( —0.8 &g& —0.4) the motion
is regular only at very low energies (near e;„)and chaos
sets in rapidly over a narrow transition region. These re-
sults are in good accord with the quantal analysis
presented above.

To summarize our results we show in Fig. 3 both
quantal and classical measures of chaos versus g for
J'=2+, 4+, 6+, and 8+. In the left-hand column we
show the values of ro (characterizing the level-spacing
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FIG. 2. Phase diagram in the g-e plane for J=8. e;„is the
minimal energy at a given g. The other two solid lines repre-
sent contours where the chaotic volume is 10% and 90% of the
total-energy-angular-momentum surface. The bars are the
statistical Monte Carlo errors and the lines through them are
just to guide the eye.

FIG. 3. Left-hand column: quantal measures of chaos; the
level-spacing distribution parameter ro vs' (top) and the num-
ber of degrees of freedom v of the J' J' B(E2) intensity dis-
tribution vs g (bottom) for J=2+, . . . , g+. Right-hand
column: classical measures of chaos; the average maximal
Lyapunov exponent A. vs@ (top) for J=2, 4, 6, and 8 and the
chaotic fractional volume a vs g (bottom) for J=2 and g.
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distribution) and v [characterizing the B(E2) distribu-

tion]. In the right-hand column we have plotted two

classical measures: the average maximal Lyapunov ex-
ponent K and the chaotic fractional volume o (calculated
irrespective of the energy). All measures are well corre-
lated;- they indicate regular motion near g = —J7l2 and
@=0 and maximal chaos around g- —0.6. It is seen

from Fig. 3 that the onset of chaos is somewhat more
gradual when approached from the SU(3) side. This ob-
servation is also confirmed in Fig. 2 where the transition
region near the SU(3) limit is considerably wider than
the one near the O(6) limit. In the SU(3) limit of rota-
tional nuclei there is a good quantum number K, the pro-
jection of the spin on the nuclear symmetry axis. As g
increases from its SU(3) value, K becomes only an ap-
proximate quantum number and eventually it is com-

pletely broken when the chaotic region in g is reached.
The fact that this transition is more gradual than the one
on the O(6) side is an indication that it is harder to
break K than the corresponding constant of the O(6)
limit. In the exact SU(3) limit, where K appears as a
missing label, the energy is independent of K and levels

of a given spin which belong to the same SU(3) repre-
sentation but with different K values are degenerate.
This K degeneracy describes an overintegrable situation
where the spacing distribution exceeds the Poisson distri-
bution near 5=0 (notice that the Brody parameter to

becomes negative). The O(6) limit has a missing label
too (v~) but the lowest spin for which it causes degenera-

cy is J=6. For the J=8+ levels we see in Fig. 1 that
for g = —0.1, h3 lies above the "regular" line L j15.

Another effect seen in Fig. 1 is the saturation of the 43
statistics, namely, the flattening out at a finite nonuniver-

sal L. This effect, not predicted by RMT, was explained

by Berry ' using semiclassical arguments. The value of
L where saturation occurs is determined by the period of
the shortest classical orbit and must have a certain scal-

ing with N which is confirmed in our studies.
To conclude, we have observed the onset of chaos in

both the level and B(E2) statistics in the transition re-

gion between rotational and y-unstable even-even nuclei.
We have also shown that the classical measures of chaos
are strongly correlated with the quantal ones.
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