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Light-Front Tamm-DancoH' Field Theory
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Light-front theory may provide a promising avenue of research for nuclear and particle physics, but a
Tamm-Dancoff truncation of field theory is required for practical computations. Such a truncation lim-
its the number of virtual mesons allowed in hadronic field theories, or the number of quarks and gluons
allowed in bound states described by quantum chromodynamics. Past Tamm-Dancoff renormalization
problems are analyzed and a solution is proposed.
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Despite years of eA'ort, strongly interacting relativistic
systems are not understood. We are able to compute the
properties of strongly interacting nonrelativistic systems
using traditional methods from many-body quantum
mechanics. Bound and scattering states of weakly in-

teracting particles are well described by perturbative
field theory. The major unsolved problem is that of the
highly relativistic bound state. The main difficulties are
far better understood now than they were in the 1940s
when the effort to use field theory in the study of strong
interactions began, but no practical tool has been de-
veloped for circumventing these difficulties. In this
Letter we propose a path that leads around some of these
problems and hopefully through the remainder, light-
front Tamm-Dancoff (LFTD). LFTD is simply the orig-
inal Tamm-Dancoff' approach' applied to light-front
field theory. The most closely related work is that of
Brodsky, Lepage, Pauli, and collaborators.

Two key areas where the relativistic bound-state prob-
lem is central are nuclear physics and quantum chromo-
dynamics (QCD). Consider first the problem of under-
standing the structure of light nuclei. At low energy and
low resolution we can eliminate intermediate- and high-

energy degrees of freedom, and describe nuclei using
nonrelativistic nucleons interacting via potentials. As en-

ergy and resolution are increased we believe a limit is ap-
proached in which nuclei are systems of many highly
correlated quarks and gluons, but there are many ways
that this limit might be reached. In particular, there
might be an intermediate regime where nonrelativistic
models prove inadequate, but where relatively few ha-
dronic degrees of freedom can be utilized to accurately
describe both nuclear structure and response. To deter-
mine if this is the case, one must have sufficiently accu-
rate descriptions of strongly interacting hadronic sys-
tems. One-pion exchange is usually considered to be
adequately described by potentials, so one really wants to
push the description at least to the range of two-pion ex-
change. In this range it is not reasonable to consider
pion exchange without including the fact that pions dress
nucleons; nor does it make any sense to ignore the fact
that pions interact with one another strongly. All strong-
ly interacting degrees of freedom included in any prob-
lem should be allowed to fully interact with one another.

Hamiltonian methods are extremely efI'ective in describ-
ing systems of a few strongly interacting particles, and

are immediately suggested by this problem.
The second example is the problem of bound states of

light quarks in QCD. The constituent quark model was

invented for this problem, and after a complicated histo-

ry led to the development of QCD; however, we are little
closer to building the bridge between these two extremes
than we were in the early 1970's. Lattice QCD is not

adequate for this task yet because of the severe con-
straints placed by the need to use uniform grids. At
present a single lattice of equally spaced points is forced
to span all distance scales appropriate to a bound state.
What one prefers here is a method that leads to a se-

quence of descriptions intermediate between the constit-
uent quark model and QCD. This suggests to us a series
of eA'ective Hamiltonians governing the behavior of
quasiparticle quarks and gluons. At low resolution one
sees constituent quarks interacting via confining poten-
tials. As resolution increases, one begins to see addition-
al constituent gluons. As resolution increases further,
one should begin to resolve the structure of constituent
quarks and gluons, and their interactions should ap-
proach the simple point coupling of QCD. Whether it is

possible to build a sufficient number of layers of struc-
ture to actually reach the QCD Hamiltonian, with point-
like quarks and gluons, is an open research question.
The point is that quasiparticles and eAective interactions
provide a promising way to build levels of structure
without having to describe every level using the grid ap-
propriate to the finest level of structure; and again one is

led to consider Hamiltonian methods and a renor-
malization-group approach.

The power of Hamiltonian methods is well known

from the study of nonrelativistic many-body systems.
Why have they not been elaborated in the study of rela-
tivistic field theory? Consider a typical Hamiltonian ap-
proach, in which one chooses a physically motivated
finite basis and diagonalizes the Hamiltonian within the
subspace spanned by that basis. This is precisely the ap-
proach first developed for field theory by Tamm, ' and in-

dependently discovered by DancoA, both of whom

sought a relativistic equation for the deuteron. Even in

nonrelativistic systems this approach fails when one
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starts with a noninteracting ground state that is very far
removed from the real ground state; and in equal-time
field theory the noninteracting and interacting vacua are
orthogonal. In practical terms, one tries to study parti-
cles built on top of the vacuum only to find that every
amplitude is dominated by "disconnected" vacuum
pieces. In perturbation theory there are analytic meth-
ods for solving this problem, but no such methods exist
for the Hamiltonian calculation.

The vacuum problem was not the only source of dif-
ficulty for Tamm and DancoA' in equal-time field

theory, ' and many people investigated Tamm-Dancoff
theory during the 1950s. They gave up when, amongst
other problems, it became apparent that the Tamm-
Dancoff truncation prohibits covariant renormalization
beyond lowest order. It should not be surprising that
such problems occur, because Lorentz-boost operators
contain interactions that change particle number in

equal-time theories.
These problems are either averted or redefined in

LFTD when one makes a crucial observation; renormal-
ization requires counterterms to depend on the sector of
Fock space within which they act. Sector-dependent re-
normalization violates locality but is needed to compen-
sate for nonlocalities arising from the Tamm-DancoA' ap-
proximation itself.

Now consider how past difficulties appear in light-
front quantization. On the light front the vacuum is

trivial, and the original vacuum problem simply does not

appear. This triviality results from the fact that light-
front longitudinal momenta cannot be negative. One

pays two prices for this triviality. The first price is that
infrared (i.e., small longitudinal momenta) divergences
are more severe on the light front than they were in

equal time, leading to "spurious" divergences. The
second price is that symmetry breaking' and the Gold-
stone phenomenon are usually said to proceed via "vacu-
um" condensation, and it is not obvious how the sym-

metry-breaking phase transition can occur when the vac-
uum is trivial. The solution to this apparent dilemma is

simple, because even in light-front field theory the vacu-
um becomes degenerate at a critical point and the
ground state becomes a superposition of states. Past the
critical point one must discover the eAective Hamiltoni-
an in the broken-symmetry phase, and in this phase the
new vacuum is again trivial. The use of the light front
does not make the problem of finding the Hamiltonian
any easier, but it also does not make it any more dif-
ficult. An essential question for QCD is what new

eff'ective interactions are induced by the chiral phase
transition.

%e will use a simple example to illustrate LFTD.
Given a second-quantized Hamiltonian, begin by trun-

cating Fock space and expanding the wave function for
the state of interest in the remaining space. The equa-
tion to be solved is the second-quantized version of
Einstein's equation,

where P+ is the light-front "momentum" operator and
P is the light-front "Hamiltonian. ' This equation is

projected onto a complete set of states within the trun-
cated Fock space, typically resulting in a set of coupled
integral equations that determine the eigenvalues and

eigen states.
The basic features of LFTD are most simply dis-

covered in super-renormalizable theories, where the ul-

traviolet renormalization problem is trivial. %'e will use
the Yukawa model in 1+1 dimensions, and drastically
simplify the Hamiltonian by dropping antifermions and
instantaneous interactions that do not enter the lowest-
order calculations. The complete Hamiltonian can be
found in Refs. 11 and 12. When antifermions are
dropped, the only divergences are spurious. '' There is

no need for the approximations we make to be valid, as
the example is merely intended to elucidate the method.
Our simplified Hamiltonian is

1a(k) a(k) + b(k)'b(k) m + P(k)
2x2k 2k ~ 2@k 2k 4z

kmF t' dk ) t' dkz I dk3 1 1
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q

The boson creation operator is a, and the fermion
creation operator is b . P represents the principal value
and p, which arises from normal ordering, is called the
self-induced inertia. We regulate the theory by remov-

ing all bosons whose momenta do not satisfy x&P+ (p,
and all fermions whose momenta do not satisfy
x~P+ (p. Note that the cutoA employed depends on
the total momentum of the state, which is conserved. By
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choosing the cutoA in this fashion, one avoids explicitly
breaking covariance. Other cutoAs and definitions of the
self-inertia are possible.

First consider charge-one states with momentum P,
and truncate Fock space so that only states containing a
bare fermion, or a bare fermion and one boson, are re-
tained. It is also convenient to scale the momentum P
out of the problem by changing variables to momentum
fractions, k; =x;P. With the above choice of cutoff's, this
rescaling completely removes P from the problem. We
can present only the final results, which are crudely indi-
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cative of the equations one finds in any LFTD calcula-
tion. Expanding the wave function in this space and pro-

jecting Einstein's equation leads to two coupled equa-
tions,

M-' —m,', — P(1) c,2

4z

=XfP1F c)(1 —x;x)

and

7
m8

c)(1 —x;x )
X

p( )=~,
8 y X y

cp is the amplitude for finding a bare fermion and

c~(1 —x;x) is the amplitude for finding a bare fermion
with momentum fraction 1

—x and a boson with momen-

tum fraction x. The eigenvalue M2 depends on the state.
There should be a complete set of fermion-boson scatter-
ing states, for which M ~ (mF+ma), with mF being
the physical fermion mass. ln addition, there should be
a single state corresponding to the physical fermion, with

eigenvalue M =m~. We have indicated that the bare
2mass depends on the sector of Fock space, using mFp in

the lowest sector and mpt in the second sector. Note
that p does not occur in the second equation. This is ac-
complished either by absorbing p into mz~ or by simply

dropping it. Above the scattering threshold, a Lipp-
mann-Schwinger approach is required; however, it is

easy to see that setting mF~ =m& yields the correct
scattering threshold.

Having completed mass renormalization in the second
sector of Fock space, consider the state below the
scattering threshold, the physical ferrnion. For this state
use the second LFTD equation to eliminate the ampli-
tude c~ in the first equation, leading to the eigenvalue
equation

2=mF'o = mF-' — P(1)
4z

F dx (2 —x)—
4& "" 1 x x my+(1 —x)ms

Both p(1) and the integral contain divergences, but these
cancel. '' We can now use this equation to fix the bare
mass. The renormalization condition guarantees that
M2=mF is a solution of the original equation. ' This
counterterm can now be used in higher orders of Tamm-
Dancoff theory ~here additional bosons are allowed, and
when many-fermion states are studied. In the former

1 1=Xmr 1+ cp,
44zx,

where the rescaled self-inertia is

case this first "mass" counterterm moves from the lowest
sector of Fock space to the sector with one boson, and
one must determine a new mass counterterm for the
lowest sector. In each order of Tamm-Dancoff theory
old counterterms migrate to new sectors of Fock space,
and the mass-renormalization condition determines a
new counterterm in the lowest sector. This procedure
leads to the correct scattering thresholds for asymptotic
states containing only free fermions and bosons, even
when the asymptotic particles become dressed.

To see how counterterms become nested, consider the
two-fermion problem. Truncate Fock space so that only
states with two bare fermions and one extra boson are al-
lo~ed. The LFTD integral equations, which we do not
have space to show, ' couple the sector with two bare
fermions to the sector with an additional boson. Follow-
ing steps directly analogous to those above, one can elim-
inate the latter sector below boson production threshold
to obtain a two-body equation for the fermions. The fer-
mions are dressed by bosons and interact by one-boson
exchange in this approximation. Spurious divergences
arise; however, if one uses the mass counterterm comput-
ed for the single fermion, all divergences cancel and the
two-fermion scattering threshold is properly fixed at
4mF. Our renormalization procedure manages to save
this aspect of cluster decomposition by insisting that a
fermion which cannot dress itself propagates with the
physical mass, and the proper mass for other cases is
dependent on the degree to which the fermion can dress
itself. We do not discuss other aspects of cluster decom-
position that are far more subtle.

The two-fermion LFTD equation has several nice
features. It is unitary, covariant, and finite for all values
of the cutoA's. In 1+1 dimensions, this is true for arbi-
trary truncations of Fock space. It is possible to show
that in the limit of large masses this equation reduces to
a Schrodinger equation for two fermions interacting via
a static Yukawa potential, ' as one would expect. The
utility of such equations for the study of few-nucleon
bound states with interactions at least partially mediated
by meson exchange should be obvious.

Another potential advantage of light-front field theory
is that none of the boost operators contain interactions;
therefore, the truncation of Fock space by particle num-
ber (e.g. , the removal of all states containing more than
two pions) does not violate boost invariance, although in

3+1 dimensions it does violate rotational invariance. As
a result, when one studies perturbation theory, '' it is
possible to derive boost-invariant results within a trun-
cated Fock space (e.g. , with antifermions removed) after
using perturbative renormalization and removing all
cutoff's. A far more diScult question to answer is what
happens when all cutofts are removed in the nonpertur-
bative Tamm-Dancoff approximation. This is a nonper-
turbative renormalization problem, and since the failure
of Tamm-DancoA theory in the 1950s it has been recog-
nized that suck problems need not be solved by the same
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counterterms that are adequate in perturbation theory.
In lowest order, LFTD closely resembles perturbation
theory, and it is easy to see that mass renormalization is

sufficient to remove all dependence on cutoff's as they ap-
proach their limits. It remains an open problem to deter-
mine what happens in higher orders.

There are two truncations in LFTD, the Tamm-
DancoA truncation that limits particle number and
cutoff's that regulate the theory. Both of these trunca-
tions are computational necessities, and there are compu-
tational limits governing the extent to which these trun-
cations can be removed. If the degrees of freedom that
are discarded are actually not important, a straightfor-
ward application of LFTD should converge rapidly.
However, in most problems of interest, one must derive
eA'ective interactions induced by the neglected degrees of
freedom, using a renormalization-group approach to ob-
tain convergence. The dominant effect of weakly cou-

pled high-energy states is to alter the masses and cou-
plings of the low-energy states. When the high-energy
states couple strongly, one must analyze renormalization
on a case-by-case basis because no reliable generic
methods exist. We are hoping that asymptotic freedom
will simplify the analysis for QCD; however, in effective
hadronic theories one is always faced with a strong-
coupling problem. LFTD may allow one to explore this

problem more thoroughly than other methods, but it
does not solve the problem.

It is easy to construct a long list of difficult and in-

teresting problems that we have not mentioned above, in-

cluding an important list for gauge theories, some of
which show up in perturbation theory. ' Some of these
problems must be solved before LFTD can be effectively

applied to the nuclear- and particle-physics problems de-
scribed above; however, LFTD has already overcome the
most serious difficulties that crippled Tamm and Dancoff
in equal-time theories. This method offers one of the

only promising lines of attack on the difficult problem of
relativistic bound states and should be thoroughly ex-

plo red.
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