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Scattering Theory of Thermal and Excess Noise in Open Conductors
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Thermal fluctuations at equilibrium and excess fluctuations in the presence of transport in open mul-
tiprobe conductors are related to the scattering matrix of the conductor. The fluctuation-dissipation
theorem for multiprobe conductors is discussed. A general expression for the excess noise in the pres-
ence of transport is derived. These results are applied to conductors which exhibit the quantized Hall
eA'ect. If backscattering is suppressed, excess noise is also suppressed.

PACS numbers: 72. 10.Bg, 73.50.Fq, 73.50.Td

Many novel phenomena in conductors with dimensions
small compared to an equilibration length have been suc-
cessfully analyzed with the help of the transmission ap-
proach. This approach' views the sample as a target at
which incident carriers are reflected or transmitted into
other probes. The measured electric resistances are re-
lated to the scattering matrix of the sample. I supple-
ment this approach with a discussion of the thermal
noise properties at equilibrium and of excess noise in the
presence of current transport. As shown earlier, the
Onsager-Casimir symmetries of the transport coefficients
can be related directly to the microreversibility property
of the scattering matrix. Under the same assumptions a
fluctuation-dissipation theorem must also hold. Since
the transmission approach assumes that scattering inside
the sample is only elastic, fluctuations must originate
solely from thermal agitation in the contacts of the sam-
ple. An instructive discussion of the Johnson-Nyquist
noise and transmission in a two-terminal conductor has
been given by Landauer. Below I present the fluctua-
tion-dissipation theorem for multiprobe conductors. The
equilibrium noise, by virtue of the fluctuation-dissipation
theorem, does not give any information which cannot be
obtained by a resistance measurement. The noise in the
presence of transport is more interesting. I show that the
excess noise (shot noise) is determined by transport
coefficients which are not obtained from a resistance
measurement. My discussion of excess noise generalizes
results by Lesovik and Yurke and Kochanski. ' These
authors considered simple two-terminal model problems
without interchannel scattering. I derive an expression
for the excess noise for multiterminal conductors subject
to a magnetic field which is valid for an arbitrary
scattering matrix. To illustrate these results I discuss
specifically the noise properties of conductors (see Fig.
1) which exhibit the quantized Hall eff'ect.

I will now describe some of the elements of the calcu-
lation. Figure 1 taken from Ref. 10 shows conductors
with a number of leads which in turn are connected to
electron reservoirs. The final results are independent of
the detailed properties of the states in the reservoirs. For
simplicity, we characterize each channel by a dispersion
E,„(k)=E,„(0)+ti k /2m. Here E,„(0) is the thresh-

old for conduction of the nth channel determined by the
lateral confinement of the reservoir. The transverse ei-
genfunction with eigenvalue E,„(0) is denoted by p,„.
The kinetic energy associated with longitudinal motion is
ti k /2m. States with positive velocity are taken to be
incident on the conductor. Transport is described by the
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FIG. l. (a) Conductor in a quantizing magnetic field. (b)
Conductor with a gate or constriction. Faint lines depict the
edge states at the Fermi energy.
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operator 4'=g, 4', where

dk y, (k)a,„,(k)e
2K"

The Ity, are the scattering states. a, (k) annihilates an

electron with energy E,„(k). The time evolution is gov-

erned by hco, —=E, (k) —p„where p, is the chemical
potential of reservoir a. To proceed we must evaluate
the current operator I, in each reservoir. To this end we

need the current matrix elements in lead a which arise if
a wave is incident in channel m in lead P and a wave is

incident in channel n in lead y,

index but not on the channel index, I find that the spec-
tral densities are determined by traces of sums of prod-
ucts Ay&(a)A&y(P). All density-of-states factors (veloci-
ties) cancel and the spectral density depends on the
scattering matrix only.

Before discussing the current fluctuations we restate
the result for the average currents. The average currents
can be expressed with the help of R„=Tr(r.,r„), the
total reflection probability in lead a, and T,p=Tr(t, p

xt,p), the total transmission probability for carriers in-

cident in probe P reaching probe a. The average current
in probe a is

dy„„(a)
lpy „(a)= . —dy. yp„, (a)

2mi 4 dx
(I,) = (e/h)„dE( —df/dF)

x (M, —R„)p,—QT,ppp (5)

dyp (a)
Ip„„(a) (2)

l, (t) = g „dkp „dk,„lp, „(a)e' "P
2& pymn

xap' (kp )a,„(k,„). (4)

Equation (4) shows that the current fluctuations are
determined by the quantum statistical properties'' of a
and a which characterize the occupation of the quantum
channels in the reservoirs. Since the average of the occu-
pation probability of each quantum channel depends

only on the reservoir index but not on the channel index,
the average current depends only on the trace of App.

The noise of a fluctuating quantity is characterized by
the spectral density (l,lp)„. The spectral density can be
obtained by taking the Fourier transform of the current
I,( )=rofdt e'"'1,(t) and by evaluating 2 (l, (yo)lp(yo')

+Ip(to')I, (to)) which is equal to 2yr(l, lp) b(to+to') In.
the "white-noise limit" which is of interest here, the
spectral density is independent of co and is determined by
the current matrix elements at the Fermi energy. Since,
on the average, the mean-square fluctuations in the occu-
pation probabilities again depend only on the reservoir

Here dy, denotes an integration over the cross section of
reservoir a. The elastic-scattering properties of the con-
ductor are determined by scattering matrices sp, which

connect the incident amplitudes in lead a to the outgoing
amplitudes in lead P. The asymptotic amplitudes of the
scattering state yp in probe P consist of an incident

wave in channel m, e' P 'Pp, of reflected waves in each
channel Pm, (vp„, /vp„) 't spp„e

' P"'Pp„, and of
transmitted waves in each channel yn of all the other

probes, (vp /v„„) 't s,p„e ' """py„. If both states in Eq.
(2) are evaluated at the Fermi energy, I find that

Apy „(a)= (vp ) ' (v,„) 't Ip„„(a) can be directly
expressed with the help of the scattering matrices s,p,

~py(a) =~ap~ayl a sapsay ~

The current operator for probe a is

In Eq. (5) f is the equilibrium Fermi function. M, is the
number of channels in reservoir a. Equation (5) can be
used to calculate the resistances %,p, ys=—(V, —&q)ll.
Here the first pair of indices denotes the current source
and sink and the second pair of indices denotes the
probes which are used to measure voltages. % is a four-
probe resistance if all indices differ from one another. It
is a two-probe resistance if the first and second pair of
indices are identical. These resistances obey the re-
ciprocity symmetry %',p ys(B) =%ys,p(

—8).
We are now prepared to state the fluctuation-dissipa-

tion theorem. The calculation outlined above gives for
the mean-square current in the frequency interval Av at
probe a,

((I,) ) =4LLvkT(e /h) dE( —df/dE) g T,p . (6)
,p(~g)

It is determined by the sum of all transmission probabili-
ties which permit carriers to enter probe a from any oth-
er probe. Equation (6) for the case of a two-terminal
conductor reduces to the Johnson-Nyquist noise formu-
la ' (I )=4hvkTG, where G=(e /h)fdE( —df/dE)T,
and T=Tr(t t). The currents at difl'ering terminals are
in general correlated. I find

(I,lp) = —2hvkT(e /h)„dE( —df/dE)(T, p+Tp, ) . (7)

The correlations between the fluctuating currents at dif-

fering probes are determined by the transmission proba-
bilities which link the two probes. If we compare Eqs.
(6) and (7) with Eq. (5) and take into account that

gpt~, )T,p=M, —R„, we see that the current fluctua-
tions are related to the symmetrized transport coefti-
cients. Equations (6) and (7) are, therefore, a manifes-
tation of the fluctuation-dissipation theorem.

Now I consider the fluctuations in the chemical poten-
tials which counterbalance the current fluctuations.
These voltage fluctuations can be found by using Eq. (5)
for the fluctuations instead of the averaged quantities.
The mean-square voltage diff'erence measured between
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any pair of leads is given by

((V, —Vp) ) =4hvkTW, p,p, (8)

where %',p, p is a two-terminal resistance. The correla-
tion between voltage diiYerences measured across two
pairs of leads is given by

current in the presence of transport. Transport causes
fluctuations in excess of the equilibrium noise. A classi-
cal discussion predicts shot noise ((hl) ) =2ehvl due to
the uncorrelated transfer of carriers through the sample.
Using Eq. (3) for a two-terminal conductor, I find in the
zero-temperature limit,

((V, —Vp)(V~ —Vs)) =2hvkT(%, p ~s+%~s,p) . (9) ((AI) ) =2(e /h)hvieViTr(r i

vari

it i2t i2) . (10)

If all indices in Eq. (9) diff'er, the correlation is deter-
mined by a symmetrized four-terminal resistance. If two
indices coincide, the correlation is determined by a sym-
metrized three-terminal resistance. For a=y and p=8,
Eq. (9) reduces to Eq. (8).

Let us now discuss the thermal fluctuations for the
conductors shown in Fig. 1. The field is such that the
Fermi energy is between the Nth and (N+1)th bulk
Landau level. Each bulk Landau level which is below
the Fermi energy gives rise to an edge state which inter-
cepts the Fermi energy near the boundary of the sample.
The transmission probabilities at the Fermi energy are
determined by unidirectional motion of carriers along
these edge states, and for the conductor of Fig. 1(a) are
given by T4i =T34 T23 Tt, 2 N. All other transmis-
sion probabilities are zero. Therefore, the mean-square
current fluctuations, Eq. (5), are proportional to N. The
correlations between currents at differing probes, Eq.
(7), are nonzero only if the probes are directly connected
by an edge state. The mean-square voltage fluctuations,
Eq. (8), are proportional to N. The correlations between
voltage fluctuations measured across diff'erent pairs of
probes are zero: The longitudinal four-probe resistances
vanish and the four-probe Hall resistances are antisym-
metric under field reversal. Recent noise measurements

by Kil et al. ' do indeed show that the mean-square volt-

age fluctuations exhibit a white-noise shoulder, whereas
correlations of voltage fluctuations do not exhibit a
white-noise shoulder. Consider now the conductor in

Fig. 1(b). A gate or constriction produces a barrier for
electron motion. "' Suppose that EC edge states are
completely reflected at this barrier. Carriers of one edge
state are partially reflected with probability R and trans-
mitted with probability T. Thus the total probability for
reflection at the gate is K+R. The transmission proba-
bilities which determine the mean-square current fluc-
tuations according to Eq. (6) always add up to N in-

dependent of the applied gate voltage. Some of the
current correlations, Eq. (7), are sensitive to whether or
not a barrier is present. For instance, (I2I3) is propor-
tional to K+R but (l|I3)=0 independent of gate volt-

age. The mean-square voltage fluctuations are also in-

dependent of the applied gate voltage. Since the Hall
resistance is no longer antisymmetric in this conductor
and since the longitudinal resistance is no longer zero,
some of the correlations now depend on the gate voltage
and are proportional to (K+R)/(N K R). — —

Next I investigate fluctuations away from the average

Equation (10) is valid for arbitrary elastic scattering and
is valid in the presence of a magnetic field. Alternative-
ly, we could express this result with the help of the
transmission matrix only. Since r i ir i i+t |2t |2= I, it fol-t

lows that the trace in Eq. (10) can also be expressed as
Tr(tiqt|2(1 —t lit lq)). Denote the eigenvalues of the
matrix t i2t i2 by T„(B)and the eigenvalues of the matrix
riirii by R„(8). Since R„(8)+T„(8)=I and R„(8)
=R„(—8), the eigenvalues T„(B) are also symmetric
functions of the magnetic field. Equation (10) for the
excess noise takes the form

((AI) ) -2(e /h)hvieVig T„(1—T„) .

This is the result given by Lesovik. If all the eigenval-
ues of the transmission matrix are small compared to
one, Eq. (11) reduces to the standard expression for shot
noise ((BI) ) =2ehvl. Most interestingly, Eqs. (10) and
(11) tell us that the shot noise will be smaller than ex-
pected from the standard result whenever the transrnis-
sion matrix has one or more eigenvalues equal or compa-
rable to 1. This result suggests that at low enough tem-
peratures electron motion through open quantum chan-
nels is correlated. Open quantum channels occur in reso-
nant double barriers, in split-gate constrictions, and in

systems subject to quantizing magnetic fields. Experi-
ments by Li et al. ' show a clear suppression of shot
noise in double barriers and indicate that shot noise is
suppressed in split-gate constrictions.

Next I present the general result for shot noise in mul-
tiprobe conductors. At kT=O I find

(hl, Alp) =2hv(e /h) g „dEf„(1 fq)—
),~() ~a) 4

x Tr(s.'p. ssp'esp„) . (12)

The mean-square current fluctuations are real and posi-
tive: If a=p in Eq. (12), each matrix s occurs together
with its Hermitian conjugate. If we consider the correla-
tions between excess currents, the coefficients in Eq. (12)
are not real. However, the sum of all terms is real and
negative on account of the unitary relation ass, ssps =0.
Again we calculate the excess voltage fluctuations by us-
ing Eq. (5) for the fluctuating currents and voltages in-
stead of the averaged quantities. I have not found a
closed expression analogous to Eq. (9) for the excess
voltage fluctuations.

Let us now return to our examples. The conductor of
Fig. 1(a) exhibits no excess noise. All nonzero transmis-
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2hv(h/e)(RT/(N K R) j(—V—
~

—V2) . (13)

Equation (13) predicts that the excess voltage fluctua-
tions become larger the more edge states are reflected.
If all but one edge state are completely reflected, K
=N 1, Eq. (13—) is proportional to R/T and shows that
the excess voltage fluctuations diverge as the conduction
path is pinched off. Similar results are obtained if the
current source and sink are at different terminals than
discussed above.

Observation of the absence of excess noise in situations
where there is no backscattering would further enhance
our understanding of transport in the quantum Hall re-

sion probabilities are quantized. The conductor of Fig.
1(b) also exhibits no excess noise as long as transmission
through the barrier created by the gate is quantized.
The mean-square currents and the correlations given by
Eq. (12) are zero. For the situations shown in Fig. 1

each quantum channel is fed by only one reservoir.
(Elastic inter-edge-state scattering from one edge state
to another away from the gate does not change this re-
sult. ) In the conductor of Fig. 1(b) excess noise arises
only in a transition region where at least one of the edge
states is only partially reflected or transmitted. Consider
the case where current flow is from contact 1 to contact
2. The mean-square current fluctuations are nonzero

only at terminal 1 and terminal 3. I find that ((BI~) )
and {(AI3) ) are both proportional to 2hv(e /h)RT(p~
—p&). Only the correlation between the currents at ter-
minals 1 and 3 is nonzero and given by —2d, v(e /h)
xRT(p~ —pz). The resulting mean-square voltage fluc-

tuations measured between terminals 1 and 4 and mea-
sured between terminals 2 and 3 are zero. The mean-

square voltage fluctuations between any other pair of ter-
minals are given by

gime. Different theoretical models of the fractional
quantum Hall eAect' likely give diAering results for the
noise properties and it would also be interesting to com-
pare these with experiments.
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