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Shape Fluctuations of Polymerized or Solidlike Membranes
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Polymerized membranes or solidlike elastic sheets are studied by scaling arguments and Monte Carlo
simulations. We find that the roughness exponent ( has the value t,

= —, while previous simulations gave
(=0.64~0.04. Our data are consistent with a finite value of the shear modulus on large scales. We
also find a pronounced crossover from fluidlike behavior with (=1 on small scales to solidlike behavior
with g= —,

'
on large scales. This crossover should be observable in experiments on the flickering of red

blood cells.

PACS numbers: 64.60.Fr, 05.40.+j, 82.70.—y

Polymerized membranes are two-dimensional sheets of
molecules with a fixed connectivity such as, e.g. , protein
networks of biological membranes or bilayers of polym-
erized lipids. ' Recently, a substantial amount of
theoretical work has been devoted to such mem-
branes. ' First, self-intersecting "phantom" mem-
branes have been studied which can exhibit crumpled
states. Real membranes cannot self-intersect, however,
and this constraint of self-avoidance prevents crumpling
at all temperatures.

The uncrumpled state of a polymerized membrane still
exhibits interesting scaling properties: For a membrane
segment of linear size L, the transverse displacements
have a typical amplitude L& -l.~ governed by the rough-
ness exponent g. One may then introduce a scale-
dependent bending rigidity which grows as -L"", with
ri„=2 —2(. Likewise, the shear modulus behaves as
-L "",with ri„=4(—2.

Recently, Monte Carlo (MC) and molecular-dynamics
simulations have been performed in order to determine
the value of (. In these simulations, a triangular network
of "balls" connected by "tethers" was studied which
gave the value (=0.64~0.04. ' ' Here, we also report
results of MC simulations but for the continuum model
of a solidlike elastic sheet. ' The latter approach has
been previously applied to fluid membranes. '

Our results are as follows. First, scaling arguments
give (i) the lower bound g~ —,

' for the roughness ex-
ponent, and (ii) the value (= —, for zero bending rigidi-

ty, re=0, provided the model is well defined in this limit.
We then present extensive MC simulations which reveal
that the limiting value g= —,

'
applies, in fact, to polymer-

ized membranes for general rc~ 0. Obviously, this value
is very different from the values /=0. 64+ 0.04 obtained
for tethered networks. ' ' We show that this discrepan-
cy arises from a pronounced crossover: For relatively
large bending rigidity or relatively small shear modulus,
the small-scale excitations of the membrane are charac-
terized by /=1 as for fluid membranes, ' ' and one has
to probe undulations beyond a certain crossover scale in
order to see the true asymptotic behavior with (= —,'.
Thus, the values for g obtained from previous simula-

/f, il, u~, u2j = d x[ —, x(V I) + —, K~(u~~+u2q)

+@[—,
' (u)) —u2z)'+2u)'2]j, (2)

where ~, Kz, and p are the bending rigidity, modulus of
area compressibility, and shear modulus, respectively. In
addition, we include an external potential V(l) which
confines the shape fluctuations of the membrane. Thus,
we consider the eA'ective Hamiltonian

P{l,u), upj ='S,.[l,u), upj+„d x V(!(x)) (3)

tions of tethered networks represent effective exponents
which reflect this crossover.

Our results have important consequences: (i) The
partial resummation of perturbation theory performed
by Nelson and Peliti gives, in fact, the correct value of
g. This is quite unexpected. (ii) The value (= —, implies
that the critical exponent g„ for the shear modulus is
zero since g„4(—2 as mentioned. In such a case, the
shear modulus could still vanish with a weak logarithmic
scale dependence. However, our data do not give any in-

dication of such a logarithmic behavior and thus are con-
sistent with a Pnire value of the shear modulus on large
scales. (iii) We estimate that the crossover between
fluidlike and solidlike behavior can be studied in experi-
ments on the flickering of red blood cells ' see (15)
below. (iv) Unbinding transitions of polymerized mem-
branes interacting with nonretarded van der Waals in-

teractions belong to the intermediate fluctuation regime
with rather complex critical behavior.

On length scales which are large compared to the
mesh size of the polymerized network, the membrane
can be viewed as a thin solidlike elastic sheet. Its con-
figurations are then described by two lateral displace-
ment fields, u l and u 2, and a transverse displacement
field, I, which depend on the coordinate, x = (x ~, x2), of a
planar reference state. The strain tensor u;, is then given
b ]3

u„= —, [8)u;+r);uj+r);I 8)1],
with t);—=cl/8x; and i,j =1,2, and the elastic energy has
the form
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Y=—4pKz/(p+Kg ) . (4)

In the absence of an external potential, i.e., for V(l)
=—0, the roughness of the membrane can be character-
ized by the diN'erence correlation function

for the membrane displacements, where a small-scale
cutoA' a is implicitly contained. One may now perform
the partial trace over the phononlike fields, ui and u2,
and obtain an eAective Hamiltonian for I alone which
depends on p and K& only through the two-dimensional
Young modulus,

scaling form

(I) = (x/Y) "Z(Px "/T'Y" ')-
with Z(p) = 2„/p~ for small p and Z(p) = Zs/p 't' for
large p.

In the MC work, the spatial coordinate x is replaced
by a square lattice with lattice constant a. The mem-
brane configuration is then specified by the dimensionless
displacement fields z—= I/l„and y;=u;/u„, where l„and
u„are two scale factors. It is convenient to choose
u„/a=—(I„/a) and I„—=a, which leads to

AC(x) —= -'([l(x) —l(0)]'), (5) u„=y, —= —. [B~y, +B~y~+8;z ri, z], (i 2)

with'

A2 =2) (x/Y)V'=S„T'/K" (7)

where S„is a dimensionless coefficient. Obviously, the
roughness must decrease with increasing x. It then fol-
lows from (7) that g» —,'. Furthermore, if A is finite
for x'=0, the expression in (7) implies (= —, in this lim-
it.

For Y =0, the model as given by (2) describes an un-
crumpled fluid membrane with (=1 and A =As
—(T/x) 't . For finite but small Y, the fluctuations are
still fluidlike on small scales but become solidlike on
sufficiently large scales. This crossover is described by

hc(x) = (K/Y) 2)(T Y x/x')

with 2)(t) =2)„t ~ for large t and $(t) =2)st for
small t.

Next, consider the shape fluctuations of the polymer-
ized membrane when confined by the external potential

~ for I ~0,
V(l) = '

Pl for I &0,

with a hard wall at l=0. For external pressure, P &0,
the membrane has a finite separation (I) from the wall.
As P goes to zero, the membrane unbinds from the wall

d8, l4, l6

(l)-1/P~ with y=g/(2+/) .

Now, the scaling arguments described above lead to the

AC(x) =A x ~ for large x.
In general, the roughness exponent ( satisfies 0 ~ (~ l.
For Y &0, the amplitude A=A„can be determined by
the following scaling argument. First, introduce the re-
scaled variable I—= (x/T) 'I 1. The Boltzmann factor for I
depends, apart from the small-scale cutoA' a, only on the
rescaled Young modulus Y=YT/x. which has the di-
mension of (length) . Quite generally, the amplitude
A in (6) should not depend on the small-scale cutoff. s

It then follows from dimensional analysis that this ampli-
tude is given by

CZ)

2-
XKg I~~Nm akz&x

I Iix

10' 10' P, 10'
FIG. i. Membrane separation i=i and roughness (& as a

function of external pressure Po for so=0 and for tvvo small
but finite values of xo,' compare Table I. The straight line has
slope

where 8, represents a suitable discretization of 8/rix, .
The discretized effective Hamiltonian P fz,y ~,y2]/T as
obtained from (3) and (9) then depends on the dimen-
sionless parameters x'p—= x/T, K'Ao KAt2 /T Po Ittt2 = 2

and Pn—=Pa /T. Likewise, the rescaled Young modulus
is given by Yp:4pnKgp/(pp+Kqp) =Ya /T. This dis-
cretized model has been studied for periodic boundary
conditions using a vectorized MC code which is an ex-
tension of the code in Ref. 14. This code now performs
up to 180 megaflops per processor on a Cray Y-MP com-
puter.

The results of our simulations are presented in Figs.
1-3 and in Table I. In Fig. 1, the behaviors of (z) and
g&—= ((z —(z)) )'I are shown as a function of pressure
Po (i) for Ko =0 and (ii) for two small but finite values of
xo. Inspection of Fig. 1 shows that the limit of zero rc is
not singular. Furthermore, the data for (z) lead to
y= —,

' and thus to (=2@/(I —y) =1/2 in agreement
with the scaling arguments.

The range of Pn values displayed in Fig. 1 is limited to
about three decades by finite-size effects and critical
slowing down. ' A much larger range can be studied,
however, for the reduced pressure

p
—PK5/2/T2Y3/2 p Ks/2/Y3/2 (i3)
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FIG. 2. Rescaled separation (z)/zo with zo=(vo/Yo)' as a

function of rescaled pressure p =POKs~'/Ys~'. The symbols are
explained in Table I. The straight line has slope —

—,
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FIG. 3. Ratio g~/lz) as a function of 1/(z). The dashed line
represents an extrapolation of the solidlike behavior while the
solid line represents the fluidlike behavior. The symbols are ex-
plained in Table I.

VFi(l) =—T'/(c i
x-I '+c2Yl 4], (14)

which determines the shape function Z(p) in (11). As
shown in Fig. 2 and Table I, our data for different com-
binations of Kp, Kgp, and pp extend over ten decades in

the reduced pressure p. The entries in Table I are or-
dered according to the size of zo =—(tro/Yo) ': Smaller
and larger values of zp correspond to a range of smaller
and larger p values in Fig. 2, respectively. The tethered
networks studied previously are characterized by Yo
=20 and tro~ 0.46 which belongs to an intermediate
value of zp and, thus, to a p range within the crossover
region. Our data do not indicate any confluent logarith-
mic singularities for this critical behavior; they are there-
fore consistent with a frnite shear modulus on large
scales.

Inspection of Fig. 2 shows that the data for (z) exhibit
a pronounced crossover from fluidlike behavior at large p
to solidlike behavior at small p. More precisely, these
data have the scaling form as given by (11) with tlr = —,',
Z„=1.5, and Zs=0.5. These values may be used to
construct the fluctuation-induced interaction

C(q) =T/fc(TY) '"q'+xq'], (15)

with c =1.3. This implies the crossover length L*—=2ztr/
c(TY)': The membrane is fluidlike and solidlike for
wavelengths L & L* and L & L*, respectively.

TABLE I. Values of elastic moduli used in the MC simula-
tion; see Figs. 1-3. For comparison, the values for tethered
networks (TNW) are also included.

ior over the accessible length scales.
Finally, let us consider the flickering of red blood cells,

which has been experimentally studied for a long
time. "' The plasma membrane of these cells consists
of a fluid lipid bilayer coupled to a network of rodlike
spectrin molecules; it represents an example of a poly-
tnerized membrane provided the connectivity of the net-
work does not change on experimentally relevant time
scales. In the flicker experiments, one essentially mea-
sures the Fourier transform C(q) of the correlation func-
tion (l(x)l(0)). ' Our results imply that this function
has the form

with c]=16 and c2=0.53. The asymptotic dependence
of the membrane separation (l) on pressure P can now be
obtained by minimization of Vt:~(l)+Pl.

In Figs. 1 and 2, we have also displayed the roughness
g~ which should behave as (~-(z& for large (z). This is
not obvious from Figs. l and 2 but it becomes evident in
Fig. 3 where the ratio g&/(z) is shown as a function of
1/(z). Extrapolation to 1/(z) =0 shows that this ratio
has the finite limit g&/(z&=R„=0. 18~0.03 for large
(z). The solid line in Fig. 3 represents the ratio g~/(z) as
obtained for fluid membranes with Yp =0. ' In this case,
(~/(z) = Ra=0.41 4- 0.01. Inspection of Fig. 3 also
sho~s that the three sets of data corresponding to the
last three rows in Table I indeed exhibit fluidlike behav-
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For red blood cells, the elastic moduli of the plasma
membrane are estimated to be' ' '

K —-3x10 J, g~
=0.5 J/m, and p =5 X 10 J/m which implies Y=4p
=2X 10 J/m . This would lead to L*=0.51 pm
which is somewhat larger than the mesh size of the
spectrin network. If one accepts this estimate for L*,
the experiments of Ref. 18 with L +0.5 pm have been
limited to solidlike shape fluctuations. On the other
hand, it should be possible to extend these measurements
down to smaller values of L and thus to probe the full
crossover towards the fluidlike shape fluctuations.

In summary, we have demonstrated (i) that polymer-
ized or solidlike membranes are characterized by the
roughness exponent g= —,', and (ii) that they can exhibit
a crossover from fluidlike to solidlike behavior which
should be observable, e.g. , in experiments on red blood
cells.
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