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Calculation and Simulation of Chemical-Dim'usion CoefBcients: The Inadequacy
of the Mean-Field Theory
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Initial chemical-interdiff'usion coeScients in a simple cubic, random, binary alloy, Ising model have
been determined analytically and by Monte Carlo simulations, using chemical rate equations for atomic
exchanges. The results, obtained as a function of the composition gradient, enthalpy of mixing, and tem-
perature, show that the chemical enhancement of the diffusion coeScients saturates and is considerably
lower than predicted by Darken's equation. The discrepancy is due to the inadequacy of the mean-field

theory and linear-response approximation at high enthalpies of mixing.

PACS numbers: 66.30.Ny, 64.60.Cn, 82.20.Wt
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where y, is the activity coefficient of a. D, is the
tracer-diffusion coefficient of a—it is measured by moni-

toring the evolution kinetics of an initially nonuniform
isotopic distribution of a for a uniform chemical compo-
sition. The term in parentheses is called the thermo-

Interdiffusion in concentrated solid alloys has been of
interest for many years. In addition to the fundamental
interest, there are also practical motivations for its study.
Some alloy synthesis methods rely on solid-state dif-
fusion, and the stability of devices with steep composi-
tion gradients depends on its absence. One important is-

sue is the effect of chemical interactions between the al-

loyed species on the magnitude of the diffusion coef-
ficient. Depending on the sign of the enthalpy of mixing

per atom, hH;„, the diffusion coefficient will be
enhanced, reduced, or even negative, leading to spinodal
decomposition. ' While previous treatments are based
on the mean-field (MF) theory and linear-response
(LR) approximation, this Letter presents an atomistic
analysis and points out the limited validity of the previ-

ously used approach for ri=hH;„/kttT~ I, where T is

the temperature and kB is Boltzmann's constant. A
significant related result is observed experimentally in

multilayers.
Darken derived an expression for the chemically

modified diffusion coefficient, assuming LR, i.e., a pro-
portionality between diffusional flux of species a, J„and
the gradient of its chemical potential p, :

J,= —C,M,Vp, ,

where M, is the mobility of the atomic species a, and C,
its concentration. This and all other equations in this
Letter are given in the lattice coordinate system. Ex-
pressing Vp in terms of c„ the fraction of sites occupied
by a atoms, Darken obtained an expression for the
chemical-diffusion coefficient D,:

iVc. /
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where A. is the interatomic separation. For a finite hH;„
and fixed temperature, Eq. (4) implies that the
chemical-potential variations between neighboring lattice
sites are small, i.e.,

Both the MF theory and the LR approximation are com-
monly used to describe fluxes in nonuniform systems.

Tu has applied chemical rate equations to derive
chemical-diffusion coefficients in alloys. His analysis
employs the chemical potential and therefore the MF
theory, but not the LR approximation. If one normalizes
Tu's exponential jump probabilities, his result has the
form

—,
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v is the rate of successful atomic jumps for unbiased ran-
dom walk, equal to voexp(AE/ktt T), where vo is the rate
of atomic attempts to jump over a saddle point of height
AE For a given e.nthalpy of mixing, Eq. (5) is satisfied
for a sufficiently small Vc [Eq. (4)], and Eq. (6) is then
reduced to Darken's assumption, Eq. (1). On the other
hand, for a given Ve, a sufficiently large enthalpy of mix-

ing would lead to a nonlinear dependence of the flux on
Ve. We stress that, within the atomic-jump model, the
only approximation used in the derivation of Eq. (6) is

dynamic factor. For a regular solution, Eq. (2) can be
expressed as6

D, =D, (1 —2/s. Hm;, /kttT) .

The derivation of Eq. (2) from Eq. (1) is exact, but
Eq. (1) is approximate because (1) it uses the chemical
potential as a mean field and (2) it is a first-order ex-
pansion of J in Vp„ i.e., a LR approximation. The
latter was assumed to apply when the composition varia-
tions between neighboring lattice sites are small, i.e.,
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the MF theory.
More sophisticated analytical methods have been ap-

plied to diff'usion in alloys (see review in Ref. 8). These
were aimed primarily at calculating correlation factors
for the vacancy mechanism and did not address the
atomistic origin of Darken's enhancement. Murch has
confirmed Darken's equation for a lattice gas by Monte
Carlo simulations. However, he did not cover strong in-
teractions (rt ~ 1 for an alloy), for which a single-phase
lattice gas is not in equilibrium.

Beyond the MF theory, if individual atomic jumps are
considered, they are expected to lead to a discrete spec-
trum of enthalpy changes, hs;, which will depend on the
local atomic configurations. Because of local composi-
tion fluctuations, the values of he; will not vanish for a
vanishing composition gradient. The present Letter
demonstrates that this fact has a profound eff'ect on the
diffusion behavior. We have modeled alloy diffusion
with atomic exchanges in a simple cubic (3D), chemical-
ly random, binary alloy, Ising model with conserved dy-
namics. ' %'e report the results of both exact calcula-
tions and Monte Carlo simulations of the initial dif-
fusional flux as a function of g and the concentration
gradient. The chemical enhancement is shown to satu-
rate at a value lower than 3, in contrast with an enhance-
ment as high as 100 predicted by Darken's equation,
leading to the conclusion that the MF theory fails when
gM 1

We have studied a chemically random alloy on a sim-

ple cubic lattice with equal average fractions of a and P
atoms, a constant composition gradient in the (100)

direction, and fixed compositions of the boundaries per-
pendicular to the gradient. Nearest-neighbor (NN) in-

teractions were assumed, with the bond energies between
x and y, c,-, set as e, =cpp= —e and e,~=a~, =~, yield-
ing AH, „=3m. Exchanges between randomly selected
atoms and their NN's were performed with a probability
equal to exp( —dc/kttT)/[I +exp( —he/ kt3T)], where
h, c is the energy change upon exchange. The resulting
behavior is therefore a function of q. Atomic exchanges
between two neighboring planes were considered, and
two additional planes provided the correct NN environ-
ment. The steady-state flux, for fixed compositions at
the end planes, was determined as a function of both the
composition gradient and rt. Only the initial stages of
diffusion were analyzed, so that the slowdown of the
diff'usion kinetics as the alloy orders ' ' or phase
separates does not enter into the results. In this model, a
and P atoms have the same atomic volumes, flux magni-
tudes, and diA'usion coefficients, the interdiffusion
coefficient' is equal to the atomic-diff'usion coefficients,
and the Kirkendall eff'ect ' is absent.

Both analytical treatment and Monte Carlo simula-
tions were used to analyze the model. Simulations were
performed on a lattice with 720000 sites. The atomic
flux for a given composition gradient was determined by
averaging over 500 runs, each consisting of approximate-
ly 0. 1 Monte Carlo step per lattice site (see Ref. 14 for
details). The error was estimated from the spread of the
results. Chemical rate equations" ' were applied to ob-
tain an analytical expression for the total flux of a atoms
between planes 2 and 3:
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where a; =c2(1 —c3)pp3(ke )
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and b, = (1 —c2)c3
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c, is the average fraction of a atoms in plane i, and X is
the lattice parameter. v is the rate at which a given
atom participates in an exchange, and is thermally ac-
tivated in a way similar to that in Eq. (6). The summa-
tion is over the values attainable by he;, {(—20+4n)e],
where 0 ~ n ~ 10 is an integer, and p23(&e;) [p32(+8/)]
is the probability that, given an a [Pl atom in plane 2
and a NN of type P [a] in plane 3, the surrounding site
occupations are such that the energy change upon atomic
exchange is he;. The following relations hold: p23(AG;)
=p32( —/3e;) for all i, and p;p»(&e;) =Z, p32(hei)'
=1. The calculation of p23 and p32 was based on the
average compositions of planes 1-4, taking into account
the probabilities of all possible NN configurations for a
random alloy. The functional behavior of Eq. (7) is
better illustrated when expressed in the form

In Fig. 1, the calculated flux J is plotted as a function
of the concentration gradient ~VC, ~

for several values of
g. The curves for all g & 5, and those for all g ~ —5,
are nearly identical to each other. For all g's and for
gradients less than 10 at. % per lattice plane, the flux ob-
tained is proportional to the gradient within an error less
than 2%. Fick's first law' is therefore valid and one can
define a diff'usion coefficient as D =J/~VC, ~. Its value is
plotted in Fig. 2 as a function of q along with the corre-
sponding simulation results and Darken's equation for a
regular solution [Eq. (3)]. As verified separately, the
tracer-diffusion coefficient for the present model is in-
dependent of rt. The good agreement between Eq. (7)
and the simulation is not surprising because the former is
exact for the initial stages of diff'usion. One observes
that the chemical enhancement saturates for large g, and
does not exceed 3. For real alloys and temperature
ranges in which atomic mobility can be observed,

~ g~ can
be as high as 50, so that the thermodynamic factor in
Darken's equation can exceed ~ 100. Figure 2 therefore
indicates a significant discrepancy between Darken s and
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FIG. 1. The atomic flux as a function of the concentration
gradient (in dimensionless units) calculated for diFerent values
of rt =AH, „/kqT, as indicated. 1 6v is the total atomic at-
tempt frequency (in all directions). The lines for all rt» 5

( ~ —5) are nearly identical.

FIG. 2. The diffusion coefticient determined from the slopes
in Fig. 1, as a function of rt =AH, ./kqT The sim. ulation re-
sults and Darken's equation are plotted for comparison. The
simulation error in D is less than 0.01.

the present results.
The results illustrate the shortcoming of both the LR

approximation and the MF theory. While the flux is

nearly proportional to the concentration gradient for a
given rt, the LR assumption [Eq. (1)] would also require
it to be linear in g for a regular solution and a given con-
centration gradient. Considering the slopes of the lines
in Fig. 1, this is clearly not the case. Figure 1 is in

disagreement with the modified Tu expression [Eq. (6)],
which predicts that the flux becomes independent of VC,
for rt ~. Also, Eq. (6) predicts the validity of
Darken's equation for sufficiently small composition gra-
dients. The present results show, however, that the
chemical enhancement saturates at equal values for ar
bitrarily small composition gradients. We conclude that
the MF theory is not applicable in this limit. The physi-
cal reason for the saturation is the fact that for ~ri~ &&1,
all downhill jumps, and no uphill jumps, are successful.
There is a negligible probability that a thermal fluctua-
tion will cause an uphill jump or impede a downhill

jump. This behavior is a result of the discrete spectrum
of h, e s and the fact that their occupations, but not the
energy values, are a function of the composition gra-
dient.

In Fig. 2, for sufficiently small values of q, the present
results approach the linear behavior of Eq. (3). Howev-

er, the slope of the calculated curve is approximately
16% greater than that of Eq. (3). This is a result of the
fact that the regular-solution expression in Eq. (3) de-
scribes the evolution of an alloy in a subspace of parame-
ter space in which the chemical short-range order (SRO)
is zero. In the present model, however, although initially
random, the evolution of the alloy is not constrained to a
vanishing SRO and therefore occurs at a higher rate
(each downhill jump increases the SRO). The eff'ect of

SRO on p;, (d, )@is outside the scope of this Letter and
will be described else~here. ' Another aspect not includ-
ed is the existence of correlation effects. Geometrical
correlations exist for diffusion mechanisms such as va-
cancy or interstitialcy, but not for interstitial or ex-
change mechanisms. On the other hand, physical corre-
lations between atomic jumps in alloys exist for all jump
mechanisms. The author expects, however, the satura-
tion of atomic-jump frequencies to be inherent to all
mechanisms.

An experimental verification of the present theory is
difficult because of the need to perform independent
measurements of tracer- and chemical-diffusion coef-
ficients. A measurement of the temperature dependence
of the chemical-diffusion coefficient alone will not suffice
because, given the large uncertainties in diffusion mea-
surements, the exponential temperature dependence of
D,* will obscure the weaker temperature dependence of
the thermodynamic factor. In addition, for large g's,
chemical order or phase separation is likely to develop
during interdiffusion. To the author's best knowledge,
experimental verification of Darken's equation exists
only for small values of g. ' ' There are, however,
diffusion geometries for which a MF theory makes the
treatment one dimensional and therefore yields errone-
ous results. A discrete, analytical version of the theory
of spinodal decomposition predicts a positive amplifica-
tion factor for the evolution of a multilayered solid for
—g))1 and sufficiently small modulation wavelengths.
In contrast, Monte Carlo simulations ' and experi-
ments ' show that for AHmjx & 0, if a modulation is in-
consistent with long-range order, then the amplification
factor is negative for all wavelengths. The present
analytical treatment can be applied to this diffusion
geometry and yield expressions for ordering kinetics. '
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In summary, we have performed analytical and Monte
Carlo calculations of the initial stages of chemical
interdiffusion in a simple cubic, chemically random,
binary alloy. For large enthalpies of mixing, the chemi-
cal enhancement of the diA'usion coefficient is shown to
saturate and be significantly lower than that previously
predicted, even for infinitesimally small concentration
gradients. It is concluded that neither the mean-field
theory nor the linear-response approximation is applic-
able in this regime. Further work will include the eA'ect

of chemical order for alloys in equilibrium.
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