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Diffusion Coefficient Increases with Density in Hard Ellipsoid Liquid Crystals
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Molecular-dynamics simulations of highly nonspherical rodlike and platelike molecules reveal that one
of the two diffusion coefficients in the nematic-liquid-crystal phase increases with density, reaches a
maximum, and decreases, while the other coefficient decreases monotonically in the usual way. This
effect seems to be associated with the density variation of the nematic order parameter near the phase
transition. A kinetic theory based on isolated binary collisions significantly underestimates the diffusion
coefficients, but partially accounts for the enhancement effect.

PACS numbers: 61.20.Ja, 61.30.By, 64.70.Md

The representation of molecular fluids by systems of
hard ellipsoids is a natural extension of the venerable
hard-sphere model which has been so useful in under-

standing the properties of atomic liquids. ' Recent pro-
gress in the kinetic theory of hard convex bodies and in

molecular-dynamics simulation of such systems has
stimulated interest in the dynamical properties of molec-
ular liquids and liquid crystals modeled in this way. Our
interest in this paper is in fluids composed of hard ellip-
soids of revolution, each having a symmetry axis of
length 2a and two equal perpendicular axes of length 2b.
Efficient prescriptions exist to determine whether or
not two molecules overlap in a simulation, and the
overall form of the phase diagram has already been
determined by Monte Carlo techniques. When the
elongation e =a/b is sufficiently diA'erent from unity,
these systems form a nematic-liquid-crystal phase be-

tween the isotropic liquid and the crystal. Previous
molecular-dynamics studies have shown the onset of the
slowing down of collective reorientation on approaching
the isotropic-nematic (I-N) transition, and have tested
the accuracy of kinetic theory for the translational and
rotational diA'usion coefficients in the isotropic phase. '

In addition, the Frank elastic constants in the nematic
phase have been determined. " These studies were
confined to moderately nonspherical shapes, e=2, 3, —,'.
Ellipsoids with e =2 do not form a liquid crystal, and the
nematic phases for e =3, 3 are thermodynamically
stable only over a narrow range of densities p, roughly
between 70% and 80% of the close-packed density p,~.

Here we report results for much more anisometric el-

lipsoids of revolution, with e =10,5,0.2,0.1. For these
rodlike and platelike particles, the I-N transition occurs
at a much lower density, as expected from the approxi-
mate theory of Onsager' and in accordance with the
phase diagram determined to date, so there is a much
wider nematic range. In this Letter we focus on the den-

sity dependence of the translational diAusion coefficients
within the nematic phase. Full technical details of our
molecular-dynamics simulations have been given else-
where, so we present only a brief summary here. We
use collision-by-collision dynamics with free flight be-

TABLE I. Nematic order parameters S, diffusion

coefficients parallel (Dii) and perpendicular (D~) to the direc-
tor, and the corresponding kinetic theory predictions (Df, D&)
for hard ellipsoids of various elongations e. In the isotropic
phase parallel and perpendicular components are identical.
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0.961
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0.452
0.338
0.921
1.564
1.531
1.380
0.205
0.159
0.196
0.380
0.337
0.258
0.171
0.105
0.042
0.030
0.019
0.014
0.337
0.077
0.048
0.014
0.007

Dg

0.452
0.338
0.154
0.110
0.052
0.029
0.205
0.159
0.107
0.056
0.040
0.027
0.171
0.180
0.200
0.176
0.153
0.108
0.337
0.590
0.580
0.361
0.236

0.173
0.120
0.229
0.488
0.782
0.870
0.097
0.074
0.075
0.192
0.206
0.183
0.104
0.059
0.037
0.029
0.021
0.017
0.223
0.063
0.048
0.022
0.013

DE

0.173
0.120
0.084
0.071
0.040
0.032
0.097
0.074
0.052
0.042
0.033
0.026
0.104
0.114
0.149
0.155
0.148
0.122
0.223
0.393
0.429
0.407
0.296

tween collisions; each forthcoming collision is detected
by a method similar to that of Rebertus and Sando.
The collision dynamics are completely determined by the
conditions that the ellipsoids are hard, smooth bodies,
and that energy, linear momentum, and angular momen-
tum are conserved. The molecules are taken to have unit
mass m, distributed uniformly throughout the ellipsoid,
and the molecular moment of inertia is calculated ac-
cordingly. However, the moment of inertia about the
symmetry axis is set to zero, and the ellipsoids are treat-
ed dynamically as linear rotors with the angular velocity
perpendicular to the axis at all times. The temperature
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FIG. 1. Density variation, for each elongation e, of the
nematic order parameter S; diffusion coefficients D parallel (II)
and perpendicular (J ) to the director, on a logarithmic scale;
and the ratios D/D, where D is the kinetic theory prediction.
The lines are to guide the eye. The vertical broken line indi-
cates the transition density p».

T is chosen such that kqT=1, ka being Boltzmann's
constant: This establishes a convenient time scale for the
simulation.

In these simulations we employed truncated octahe-
dral periodic boundary conditions. For e =0.2, 5 we used
a system size of N=216 molecules, while for e =0.1, 10
we used N =500. W'e did not systematically investigate
the dependence of our results on system size: Our pri-
mary concern is with the density variation of the
diff'usion coefficient for fixed /V. Typical production run
lengths were (0.5-1.6) & 10 collisions, depending on
density: Thus, the results were averaged over times
t„„„-(2000-15000)t,., where l, is the mean time be-
tween collisions per molecule. These run times are usu-

ally considered ample for the determination of single-
particle properties, although we must bear in mind the
slow fluctuations inherent in the nematic phase. We ex-
amined densities from just below the transition density
piN (as indicated by the nematic order parameter) to
0.65p,~. For the weakly first-order I-N transition there
will be a narrow coexistence region around p~N, but we
have found no evidence of two-phase coexistence at the
state points studied here. We have not yet located the
solid-fluid transition for these systems, but the upper
density limit p =0.65p, ~ is below the freezing density for
all ellipsoid systems studied to date. The director and
the nematic order parameter 5 were determined in a
standard way. ' Simulation averages of 5 appear in
Table I. These values are plotted in Fig. 1, together with
results of additional runs (not used for the diff'usion

coeflicient calculation) close to the N-I transition.
We calculated the center-of-mass velocity autocorrela-
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FIG. 2. Velocity autocorrelation functions v(i), on a loga-
rithmic scale, for prolate ellipsoids with e = l0. Time is given
in units of t;, the mean time between collisions. We plot c(t)
for the isotropic phase at density p/p„=0. 2, and for the
nematic phase at p/p, ~=0.35 showing separate components
parallel (II) and perpendicular (J ) to the director.

tion functions

c,(t) =(v, (0)v, (t)) =(v, (ro)v, (to+t)),

where a labels the Cartesian component, resolved in a
system of axes based on the liquid-crystal director (the
average preferred molecular orientation vector) defined
at each time origin to. The director was seen to vary
slightly during a simulation run, but remained essentially
constant over the decay time of molecular velocities.
Note that the chosen units of temperature and mass im-

ply that c,(0) =1; i.e., the correlation functions are nor-

malized.
In Fig. 2 we show, as illustrations, log-linear plots of

the velocity autocorrelation functions for e =10 below
and above the I-N transition. It is intended to analyze
these time-dependent results in more detail in a later
publication: Only a few important points will be made
here. The velocity correlations extend to very long times,
especially for e =10, even in the isotropic phase. We
tentatively attribute this to the coupling of the velocity
with slow molecular reorientation, not to coupling with
the hydrodynamic vortex mode which gives rise to alge-

braic t long-time tails. ' The decay seems to be ex-
ponential, not algebraic, at long times: We have not

found any evidence for algebraic decay, which may be
present but masked by other eA'ects. Above the phase
transition, in all cases, there is a clear distinction be-
tween the behavior of the velocity component v

~~ along
the director and that of either of the two equivalent per-
pendicular components v&. For the rodlike, prolate ellip-
soids, after a very short initial decay, c~~(r ) falls extreme-

ly slowly, over many tens of collision times. The func-
tion c~(t), in contrast, decays rapidly to a low value.
For moderately low-density systems a small long-time
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decay is seen in this component. For the platelike, oblate
ellispoids similar observations apply, but with the behav-
ior of c~(t) and c~~(t) interchanged. At the higher den-
sities for oblate ellipsoids a negative "rebound" effect is
observed in c~~(t).

Diffusion coefficients are related to the velocity auto-
correlation function as follows:

D
u O

dt cia(l ), D~ = dt c~(t ) .

These integrals were calculated numerically from the
measured correlation functions out to some maximum
time t,„; in all cases we took t .„„&501,. As a check,
we explicitly accumulated these integrals during the
simulation via the functions (U, (0)[r, (t ) —r, (0)1),
0~ t ~ t,„, where r. ,(t) is a center-of-mass coordinate.
We found good agreement with the results obtained from
the numerical integration. In many cases the velocity
autocorrelation function had not decayed to zero at
t =t .,„, but in all cases an accurate exponential decay
time r could be determined from log-linear plots. Ac-
cordingly, a long-time correction was added to the in-

tegral on the assumption that, for t & t,„, c,(t .)
=c,(t,. „)exp[—(t —t ,„)/r ]. T. he resulting values of

D~~ and D& appear in Table I. An Enskog-like kinetic
theory, based on independent binary collisions, would

predict exponential decay of the velocity autocorrelation
functions at all times, c, (t) =exp( —t/r, ), determined

by the initial gradient. The corresponding predictions
for the diffusion coefficients, D~~ and D&, also appear in

Table I.
We summarize our results in Fig. 1. Consider first the

prolate cases e=5, 10. Understandably, in the aligned
phase, the molecules find it easier to diffuse along the
director, and indeed D~[ just above the transition is larger
than D in the isotropic phase just below. This result has
been seen before, in studies' of the Berne-Pechukas

model, ' and in our own simulations of hard ellipsoids
with e =3. However, as density is further increased, over
almost the whole nematic range, the expected decrease in

D[~ due to the increased collision rate is offset by another
effect. Close to the I-N transition D~~ actually increases
with density. This seems to be associated with the rise in

the nematic order parameter: Presumably this reduces
the contribution of decorrelating collisions parallel to the
director. This enhancement of D~~ seems not to have

been observed before. At sufficiently high density D~~

starts to decrease, and eventually negative rebound con-
tributions can be seen in the associated correlation func-

tion, just as in the atomic fluid.
Turning to the oblate shapes e =0.1,0.2 (see Fig. 1),

we see that D& behaves in a similar, if less dramatic,

fashion. The platelike molecules slip more easily
through the liquid crystal perpendicular to the director,
and the increasing orientational ordering compensates
for the tendency of the rising collision rate to reduce the
diffusion coefficient.

We are unaware of any explicit theoretical prediction
of these eA'ects. The increase of D~~ with density of rod-
like molecules is reminiscent of the divergence of the lon-
gitudinal diffusion coefficient predicted by Doi and Ed-
wards' ' and tested by simulation of the isotropic hard
needle fluid. ' ' The Doi-Edwards theory applies in the
semidilute regime, and their idea of "tube dilation" asso-
ciated with orientational ordering may be valid here.
However, our systems are far from the appropriate scal-
ing regime, and we see no simple scaling relation be-
tween D and p. A diA'erent theory, due to Doi, ' ' de-
scribed the rotational dynamics of rodlike molecules in
dense isotropic and nematic phases, but does not address
translational motion. It is well known that shear viscosi-
ties of rodlike polymers decrease with increasing concen-
tration (and order parameter) in the nematic phase, '

but this is associated with theories of rotational diffusion.
In our simulations, in the nematic phase, reorientation is
almost immeasurably slow.

Except at the highest densities, the Enskog predictions
D~~ and D& are gross underestimates. Nonetheless, D~~

for the prolate molecules and D j for the oblate ones do
increase with density above p~N, rather more rapidly in
fact than D~~ and D~. The ratio D/D is shown in Fig. 1:
It is typically very large around the phase transition and
decreases thereafter with increasing density. Thus, the
observed dramatic density variation of the diffusion
coefficients is a combination of two conflicting influences:
the short-time isolated binary collision effects, dictating
D~~ and D~, and the long-time correlations, which deter-
mine the ratios D~~/D~~ and D~/D~. The first of these
should be easily understood, but the origins of the second
are still unclear.

We should note that we have already reported' values
of D/D as high as 1.57 for ellipsoids with e =2, 3, —,

'
in

the isotropic phase. The results presented here for the
isotropic phase just below the phase transition confirm
and extend our previous observations: The enhancement
is more dramatic (with D/D as high as 2.8 here) as the
nonsphericity increases. Furthermore, for the prolate
molecules at least, the ratio D~~/D~~ becomes even higher
on entry into the nematic phase. This suggests that the
enhancement D/D in the isotropic phase may be associ-
ated with translation of the prolate molecule along its
symmetry axis, and the coupling of this motion with re-
orientation. It is worth repeating that the mechanism at
work here seems to be diA'erent from (and presumably
supplementary to) that giving rise to long-time tails and
values of D/D & 1 in atomic liquids at medium and low
densities.
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