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Theory of Dissipative Trapped-Ion Convective-Cell Turbulence
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The nonlinear dynamics of dissipative trapped-ion convective cells in broadband turbulence is ana-
lyzed. Saturation is achieved by both local and nonlocal transfer of spectral energy from unstable long-
wavelength trapped-ion fluctuations to shear-damped moderate-wavelength trapped-electron modes. In
particular, contrary to previous studies, it is shown conclusively that no long-wavelength condensation of
fluctuation energy is possible. The transport level associated with these structures is therefore moderate
and not catastrophic (Bohm-like), as conventionally believed.

PACS numbers: 52.35.Ra, 52.25.Gj, 52.35.Qz

Although to date there exists no experimental iden-
tification of Iluctuattons at very long wavelengths (i.e.,

ksp; S0.2, where p; = t „/0; is the ion Larmor radius, v„
is the ion thermal speed, and 0; =e8/m;c the ion

gyrofrequency), it is a common feature of scattering
measurements in high-temperature plasma discharges
that the observed spectra increase monotonically towards
long wavelengths without evincing a peak. This concen-
tration of fluctuation energy at long wavelengths under-
scores the need to assess theoretically the impact of
long-wavelength turbulence on plasma confinement and
transport. The most promising candidates in this realm
are trapped-ion convective cells' (TICC's) which, due to
their rapid bounce motion, average out any stabilizing
influence associated with shear damping and thereby
grow to large scales. Previous work on transport associ-
ated with these instabilities predicts an extremely un-

favorable scaling of the diA'usion coefficient with temper-
ature (i.e., Dec T '1 ) near marginal stability, and cat-
astrophic, Bohm-like transport concentrated at long
wavelengths. Neither of these predictions have been

borne out by experiments which operate in regimes
where such turbulence is expected to be operative. In
this Letter, we reexamine the nonlinear theory of TICC's
and show that, in fact, no long-wavelength condensation
of fluctuation energy is possible. Although TICC's can
grow to large fluctuation amplitudes, they have slow ra-
dial motion, so that the ensuing transport level is
moderate and comparable to that associated with

trapped-electron turbulence. We will focus on the so-
called dissipative trapped-ion convective cells (DTICC's)
for simplicity and ease of comparison with previous
work, although similar conclusions also follow for other
branches of the TICC family of instabilities and will be
presented elsewhere.

Dissipative trapped-ion convective cells are dominant-

ly nondispersive modes which propagate in the electron
diamagnetic direction, are destabilized by inverse
trapped-electron collisional dissipation at intermediate
wavelengths, and are stabilized by ion collisions at very
long wavelengths. The linear dispersion relation for
these modes is given by
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where e =r/R is the inverse aspect ratio, to~,

=kep, t tj/L„ is the diamagnetic drift frequency, co„
=o„/qR is the circulating ion transit frequency,

v, tr, = v, /e is the effective collision frequency of the jth
species, pb; =(2/e) '

qp; is the trapped-ion banana

width, rl; =d lnT;/d inn;, L„'=d inn;/dr, and T, has

been set equal to T; for simplicity. Finite banana-width
eA'ects introduce finite dispersion and damp the mode at
short wavelengths, while transiting ions give rise to ion

Landau damping (growth) for rl; less (greater) than —', .
Spatially, the mode maximizes itself halfway between

adjacent rational surfaces radially and balloons to the
unfavorable-curvature side poloidally. The radial and

poloidal scales are coupled together as a consequence of
the radial phase shift between the helicity of the field

!
(tracked by the trapped ions) and that of the mode, i.e.,

k, =kgs.
The nonlinear dynamics of DTICC's can be described

by a simple one-field, quasi-two-dimensional fluid model,
characterized by two qualitatively diA'erent types of non-
linearities, a one-dimensional shocklike nonlinearity, '

and a two-dimensional E& B advective nonlinearity:

e~~. V &&Vn =0, (2

where n =e'1 n "/n is the -normalized trapped-ion density
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field, y =r „0 is the poloidal variable, t. +; =e' co+;/kq,
and ell is the unit vector in the direction of the magnetic
field. %hen the advective nonlinearity is ignored, the
nonlinear equation becomes one dimensional, and forms
the basis of the nonlinear model analyzed in Refs. 2 and
4 near marginal stability. However, we note here that
the neglect of the advective nonlinearity undermines the
utility of the equation as a faithful model of trapped-ion
turbulence in tokamaks in two crucial respects. First,
given that the ratio of the advective to the shock non-
linearity is k,L„co+,/v, a, a: T', the former rapidly be-
comes dominant with increasing temperature. Second
and more importantly, the added degree of freedom in-
troduced by two dimensionality allows for a more
efficient mechanism for the system to transfer unstable
fluctuation energy to its sink where it can be dissipated.
Stated diA'erently, a steady-state configuration is likely
to be achieved more efficiently, i.e., at lower transport
levels, when the system can relax in two dimensions than
in one. Finally, for any realistic set of parameters, there
exists a broad range of unstable wave numbers, so that
the assumption of proximity to marginal stability,
while interesting from the point of view of transition
from laminar to turbulent behavior, is unlikely to cap-
ture the situation encountered in practice. The case at
hand is quite distinct from that of, for example, ion-
temperature gradient-driven turbulence, where the insta-
bility threshold associated with ri; can enforce proximity
to marginality. %ith these considerations in mind, we
are led to ignore the shock nonlinearity, and focus on the
nonlinear dynamics of the leftover equation, which we
will refer to as the Kadomtsev-Pogutse equation (KPE),
in broadband turbulence.

Critical issues in the theory of DTICC turbulence in-
clude both the direction of and mechanism for spectral
transfer. The former is especially crucial to any concept
of a saturated state of DTICC turbulence, since the
available dissipation at large scales is exceedingly weak.
Insight into the direction of spectral flow may be gleaned
from consideration of the equilibrium statistical mechan-
ics of the KPE in the limit of vanishing growth and
damping. It should be remarked that neglect of linear
growth and damping is not equivalent to ignoring dissi-
pation here, as the nonlinearity, albeit conservative, de-
pends explicitly on the collision frequency. This model
supports a single, nontrivial quadratic integral invariant,
which corresponds to the total fluctuation amplitude:
fd rn . Following standard procedure, it follows that
the canonical probability distribution of equilibrium
states is P =Z ' exp( —a pk ink l /2), and that the equi-
librium spectrum for the KPE is E„(k)=nklnkl =n'k/

a, which corresponds to equipartition. Here, e is the
effective temperature, and

Z = t . .
J +dnk exp —a g l nk l /2

k

is the partition function. As the two-dimensional system
is ultraviolet divergent, the transfer of fluctuation energy
is towards small scales. In spite of being quasi-two-
dimensional, this conclusion is in distinct contrast to the
Hasegawa-Mima equation, which is a well-known para-
digm for short-wavelength drift-wave turbulence. In
that case, the constraint of conservation of energy and
enstrophy results in the short-wavelength decay of the
energy (but not enstrophy) spectrum, resulting in a dual
cascade scenario. This observation supports the concept
that it is the dynamical constraints, rather than the num-
ber of spatial dimensions, which determine the direction
of spectral transfer. Thus, in contrast to conventional be-
lief, no long-wavelength condensation of fluctuation en-
ergy is possible within the context of the KP model of
DTICC turbulence.

The second critical issue concerns the mechanism of
nonlinear interaction. Three possibilities exist, namely,
(nonlinear) wave-wave interaction, wave-particle in-
teraction, and eddy interaction (strong turbulence mode
coupling). As DTICC frequencies are nondispersive,
wave-wave interactions are irrelevant as all triads are
resonant (i.e., if p+q=k, then co~+co~ =cok). Similar-
ly, for wave-particle interactions, which generically yield
a nonlinear transfer rate of the form

T(k) =g C(k, k')gk, k, k -Ink'I '(gk gk'),
k'

the observation that in the absence of dispersion the
trapped-ion susceptibility gi, is a constant indicates that
T(k) 0. Here, C(k, k') is a coupling coefficient, and
g& & &- is a measure of the wave-particle decorrelation
time. Thus, processes such as Compton and induced
scattering vanish identically, to a11 orders in perturbation
theory. Hence, eddy interaction is the dominant process
in DTICC turbulence. Moreover, the absence of a
three-mode frequency mismatch due to dispersion sug-
gests that DTICC's are always in a state of "strong" tur-
bulence, even if fluctuation levels are infinitesimal.

The equation for DTICC spectral evolution due to
eddy interaction may be obtained using standard closure
methods. ' %'e obtain

—yk(lnl'&k+ T(k) =0,
2 at

where

T(k) =
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is the nonlinear transfer rate, and

gk k, k (~k+k k" + ~k+~k +~k" (yk+ yk'+ yk" ~k+~~k +~k") (yk+ yk'+ yk")

L„(v )
l/2,
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(5)

is the memory function for three-mode interactions.
Here, hcoj, is the nonlinear decorrelation frequency of
mode k, and yk

= em+, /4v, s. , —v,s; is the linear
growth/damping rate. The first and third terms in T(k)
represent the physical process of advection of the density
fluctuation by the velocity field

v„=[L„(v+; ) '/e ' '
v, tt, , ]e~~ x V Bn/By .

The resulting spectral transfer to small scales is identical
to that of a passive scalar strained by the velocity field
above. The self-consistent backreaction of the density
fluctuations on the IIow is represented by the second term
in Eq. (4). Note that this contribution is negative (posi-
tive) for k„, greater (lesser) than k,I, corresponding to
nonlocal nonlinear transfer from large to small scales. "
All told, the structure of the closure approximation indi-
cates that energy flows from large to small scales in the
KP model, in accordance with the predictions of equilib-
rium statistical mechanics. It is easily verified that
gqT(k) =0, so that the closure approximation to the
nonlinearity conserves energy. The form of the nonlinear
decorrelation rate is suggested by Eq. (3) and thus
chosen to be

directly that n "/n=(k„L„) ' =(kqsL„) '. Hence, as
DTICC spatial scales are large, the predicted density
and potential fluctuation levels are also large, i.e.,
ep/T, =n "/n +(t.+;/2U„)L, /L„, where L, =qR/s is the
shear length. It is worth noting, however, that the fluc-
tuating velocities are no larger than those expected for
conventional, short-wavelength dissipative trapped-
electron mode turbulence, i.e., ~ E,

~

=c,p, /L„s, where
c, =(2 T/m, ) ' t and p, =c,/0;. Thus DTICC's are
large in amplitude, but have slow radial motion. It
should be pointed out that the "mixing-length" result
recovered here follows as a direct consequence of balance
between growth and nonlinear transfer, rather than from
the balance between nonlinear decorrelation and fre-
quency mismatch, as is usually the case for dispersive
modes. Finally, the validity of these results is inexor-
ably tied to the demonstration of nonlinear transfer to
small scales and the absence of long-wavelength conden-
sation of fiuctuation energy.

The anomalous transport caused by DTICC's is now
easily determined. The particle (D) and electron
thermal (g, ) diffusivities may be calculated in the quasi-
linear approximation, due to the fact that the collision
rate v,g, & co, h, cog, and so determines the electron-cell
decorrelation time. Straightforward application of the
previously derived saturated fluctuation levels yields the
result

Noting that gk k „- (and hence by extension, hook) is

positive definite, it may easily be shown that

scop if htokI & yk,

yk+2(~tok ) /yk 'f ~tok + yk

The ion thermal diffisivity is given by

(7)

where

is the statistically approximated eddy straining frequen-
cy. Thus gj, & &- and hen& are well behaved in both the
small- and large-fluctuation-level regimes. The notation
k is used to indicate that the forms for h, mp given above
are best viewed as spectrum-averaged decor relation
rates. Finally, since the advecting velocity field scales as
Bn/By, coherent structures in the KP model will neces-
sarily be anisotropic, in that n =nBn/By is required to
annihilate nonlinear interaction.

Saturated fluctuation levels may now be estimated us-

ing the stationarity condition yk+ T(k) =0, with yk & 0,
and assuming moderate or strong turbulence levels (this
assumption is easily verified a posteriori) It follows.

»nc«rapped-ion diffusion is nonresonant. It is thus
readily apparent that trapped-ion diffusion is not "catas-
trophic, " as conventionally believed. Indeed, our result,
which resembles that originally suggested by Kadomtsev
and Pogutse, ' is comparable to predictions based on
standard drift-wave models. ' This follows from the
aforementioned observation that DTICC's are radially
broad, but slow. In light of recent results, which indicate
that short-wavelength drift-wave turbulence-driven
transport is smaller than heretofore believed, ' it appears
that TICC turbulence is, in the final analysis, the dom-
inant agent of anomalous transport in the high-
temperature core of tokamak plasmas.

In marked contrast to more conventional models, the
KP model of DTICC's cannot, and in fact, need not, ac-
count for the ultimate disposition of the energy that is
transferred to small scales. This is a consequence of the
fact that the energy transferred to progressively smaller
scales will eventually arrive at a k '" such that coj, -
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~my;, which falls outside the domain of the KP model,
and into the realm of short-wavelength electron drift-
wave turbulence. In other words, the "long-wavelength, "
shear-damped part of the electron drift-wave turbulence
spectrum acts as the "dissipation range" for DTICC tur-
bulence. The magnitude of this spectral outflow of ener-

gy may be calculated from

fo k maxQ kmax

dk'T(k') = „dk'~~~ (lnl')t,

where k, , '"=2tot„/v+; is the maximum wave number for
the DTICC spectral range. Using the saturation ampli-
tudes obtained earlier, it follows directly that H&-
=eD/L„, where D is given by Eq. (7). Thus, in the vein

of Prandtl mixing-length theory for turbulent shear
fiows, ' the net spectral fiow rate (referred to as the dis-
sipation rate in the case of shear Aows) is equal to the
rate of mean energy dissipation by turbulent radial
transport, which, in turn, equals the inverse confinemen
time, rp ', i.e., H& -=el '. This observation also im-

plies that transfer from long-wavelength DTICC's is a
significant source of fi uctuation energy for short
wavelength drift wave t-urbulence, and that theoretical
models thereof should be reassessed by including such a
long-wavelength source.

Finally, it needs to be pointed out that due to their
large cell dimensions, these modes are susceptible to
shearing by diA'erential toroidal rotation, such as can be
expected, for example, with parallel neutral-beam injec-
tion. Suppression of these fluctuations can be expected
when the shearing frequency becomes comparable or
dominates the nonlinear decorrelation frequency. The
shearing frequency, for differential toroidal rotation, is

given by

to, =k»V»(r) =(n/R) V»iJ.r = (e/qs) V»,

vs /4 veAeeqsLn ~',

In conclusion, we have given the first detailed non-
linear analysis of dissipative trapped-ion convective cells
in broadband turbulence. %e have shown, utilizing both
equilibrium statistical-mechanical arguments and semi-

where n is the toroidal mode number, and V»'=dV»/dr is

the flow shear. The criterion for mode suppression is

then given by

quantitative closure studies, that the fluctuation energy
can only flow from long to short scales, thus clearing up
a long-standing misconception about the character of
these modes. Calculations indicate that the ensuing
transport associated with these fluctuations is moderate
and not Bohm-like. Finally, we remark that the unfavor-
able T, temperature scaling of the transport coef-
ficients is also not unreasonable, particularly in light of
recent controlled perturbative transport studies on
TFTR. '
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