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Existence of Stable Orbits in the x y Potential
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W'e have found the presence of at least one family of stable periodic orbits in the system
H= —,

'

(p,'+p, '+x'y ). This counterproves earlier claims that the x y'-potential gives fully ergodic
motion.

PACS numbers: 05.45.+b, 03.20.+i

An active field in the study of Hamiltonian dynamics
has been the search for and study of globally chaotic sys-

tems, i.e., fully ergodic systems in which all periodic
orbits are unstable and which do not exhibit the com-
plicated division of phase space (mixed stability,
Kol'mogorov-Arnol'd-Moser tori, elliptic island struc-

ture, etc. ) otherwise associated with generic Hamiltonian
systems. Examples of such systems where global ergodi-
city has been rigorously proven are Sinai billiards' and

motion on Riemann surfaces of constant negative curva-
ture. ' The question whether there exists some analytic
Hamiltonian in Euclidean space with this property still

remains open. A candidate has for a long time been the
following one: H= —,

' (p„+p,, +x y'). A number of pa-

pers have claimed or in various ways argued that this

system is ergodic. ' As we will see, this conjecture is

not true.
The scaling properties of the Hamiltonian permit us to

study the system at one single energy, which we have

chosen to be F. = —'. Furthermore, the C4, , symmetry of
the system restricts the effective motion to the funda-

mental domain f(x,y): x ~ y ~ OI, where the border-
lines y =0 and x =y are treated as hard walls. Succes-
sive crossings of (or rather bounces on) the Poincare sur-

TABLE I. Coordinates at y=0 for an orbit with period

n =11. (b)

1

2

3
4
5
6

8
9

10
11

3.146 401 23
3.068 281 26
2.812484 87
2.301 426 39
1.175 498 20
0.781 328 80
0.757 378 63
1.13033993
2.285 341 02
2.804 17409
3.064 574 98

0.001 793 19
—0.156894 46
—0.324 11247
—0.514 358 54
—0.773 406 80

0.481 31745
—0.496 210 17

0.781 278 02
0.519 178 81
0.328 11166
0.160571 14

FIG. 1. The trajectory of the orbit of Table l (a) in the fun-

damental domain and (b) in the full (x,y) plane. The contour

x -'y -' =1 encloses the energetically allowed region.
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FIG. 2. Surface of section plot around the stable orbit.

face of section y =0 now define a two-dimensional area-
preserving map (x, +~,p„;~~)=f(x„p„,). The periodic
orbits of length n are given by the fixed points of f", the
nth iterate of f. Points of an orbit with period 11 are
presented in Table I and the corresponding trajectory is

shown in Fig. 1. The trace of the Jacobian over one
complete cycle is Tr(J) = —0.27956. . . ; this gives a

pair of complex-conjugate eigenvalues well ofT the real
axis and the orbit is stable. We have thus shown that the
x y potential is not purely ergodic by explicitly exhibit-
ing a stable island —the total area of the elliptic region
is about 0.005% of the surface of section area 0~x
&3.15, —1~p„~1. The island is shown in Fig. 2.

The equations of motion have been integrated with a
fourth-order Runge-Kutta method and numerical errors
are under control.

Our investigations have been much aided by studying
the one-parameter family of potentials, V(x,y) =

~

x (x y ) ~', where the previous system is retained when

a =1 and a hard four-disk scattering system is obtained
in the limit a 0. Thus the periodic orbits may be la-
beled according to a four-disk symbolic dynamics. ' '
The periodic orbits of the hard-disk system are
transformed to the quartic system by adiabatically in-

creasing a: 0 1. Pruning of orbits due to reverse
period bifurcations (period doublings, triplings, etc. ) and

tangent bifurcations are observed in this parameter re-
gion, and there is a temporary stabilization of periodic

orbits close to the bifurcation points leading to nonhyper-
bolicity of the global motion. The cited stable periodic
orbit is associated with a bifurcation cascade in the vi-

cinity of a=1. We cannot exclude the possibility that
there exist stable orbits of length shorter than 11, since
the set of investigated periodic orbits of a given length is
so far complete only up to period 5. Details of this study
will be presented in a future publication. '

The apparent high periodicity of the shortest stable or-
bits, together with the fact they they occupy a relatively
small fraction of phase space, explains why they have so
long eluded detection. The key to our success was the
firm control of the periodic orbit structure given by the
symbolic dynamics and its pruning rules. In general, one
would expect the existence of stability islands in any
smooth potential with pruned symbolic dynamics.

%e are grateful to P. Cvitanovic for putting us on the
right track.
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