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Meandering Transition in Two-Dimensional Excitable Media
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The transition from periodic to quasiperiodie spiral-wave rotation is studied numerically by the pseu-
dospectral method in a two-variable model of excitable kinetics. Quasiperiodic behavior originates from
a supercritical Hopf bifurcation of one branch of circularly rotating spiral-wave solution. The secondary
frequency is strongly determined by the presence of a second nearby branch of solution rotating about a
larger hole radius. Scaling laws consistent with numerical results are proposed for the spiral-tip orbits in

the critical region.

PACS numbers: 82.40.Fp, 87.90.+y

Rotating spiral waves have long been observed in ex-
tremely diverse systems. The best known examples in-

clude the blue waves of oxidation propagating in the
Belousov-Zhabotinskii (BZ) reaction, ' the waves of neu-

romuscular activity in the myocardial tissue, and waves
of cyclic-AMP (adenosine monophosphate) in social
amoeba colonies of Dictyostlelium discoideum Ove. r
the years, major theoretical and experimental
progress has been made in understanding the shape and

dynamics of these waves.
In the BZ reaction, conditions are found under which

the tip of the spiral rotates in a perfectly periodic circu-
lar motion about a fixed center. In other conditions, the
spiral tip is found to deviate significantly from circular
trajectories, following epicyclelike orbits. ' The term
meander was first introduced by Winfree to describe this

type of anomalous motion. Although observed essen-
tially in chemical systems, this phenomenon is also of in-

terest in cardiology since it may be the cause of cardiac
arrythmias which can lead to fibrillation of the heart
muscle. '" Very recently, a sharp transition between
periodic (circular) and quasiperiodic (compound) spiral
rotation was found in a BZ experiment especially de-
signed to characterize the long-time asymptotic dynam-
ics of the waves. ' A secondary frequency, incommensu-
rate with the primary rotation frequency, was found to
appear in the reagent signaling the above transition, the
tip trajectories being well approximated by retrograde
epicycles constructed from these two frequencies. Nu-
merical simulations of various two-variable models of ex-
citable kinetics have also revealed the occurrence of non-

circular spiral-tip trajectories which seem well fitted by
epicycles. '' ' Although it now seems clear from these
studies that the phenomenon of meander originates from
some type of transition to quasiperiodic behavior a fun-
damental understanding of the nature of this transition is
still lacking.

In this Letter, we report the results of a numerical
study of a two-variable model of excitable kinetics which
determines for the first time in a quantitative way the ex-
act nature of the meandering transition, and brings new

insights on the origin of the secondary frequency at the

transition. Meander is found to occur via a Hopf bifur-
cation of one of two branches of circularly rotating
spiral-wave solutions when the excitability parameter of
the model 8 exceeds a threshold value 8, . Perturbations
decay exponentially below the transition, the decay rate
vanishing linearly with e=B' —8,- at the transition. The
saturation amplitude of the unstable mode obeys the c't

behavior characteristic of supercritical bifurcations. The
Hopf frequency is found to be strongly determined by
the existence of a second branch of solution which

remains stable at the transition. Scaling laws for the tip
orbits follow from the analytical structure of the vari-

ables in the critical region.
The two-variable model was chosen to be of the simple

FitzHugh-Nagumo form: '

Q =V-u —v+3u —u (la)

' =a(u-b'), (lb)

where the medium becomes more susceptible to pertur-
bations as 6 increases and a controls the ratio between

the fast excitory period r and the total transit time T of
the signal. Model equations of the type of Eq. (1) retain

some important qualitative features of spiral-wave dy-

namics while remaining amenable to analytical and nu-

merical treatment.
Equation (1) was solved using a conventional pseudo-

spectral scheme with a basis of Fourier modes and

periodic boundary conditions. This method (used exten-

sively to simulate hydrodynamic systems) is superior to
finite-diA'erence methods in spatial accuracy. It also has
the advantage that the time stepping of the Laplacian
operator in Eq. 1(a) is easily performed implicitly in

Fourier space, thereby allowing a larger time step to be
taken while maintaining numerical stabi1ity. Identical
runs on 128x 128 and 256x 256 lattices yielded identical
spiral-tip dynamics, thereby demonstrating the insensi-

tivity of the results to boundary eA'ects. Lattice units

(time steps) ranging between 0.3 and 0.5 (0.05 and 0.1)
were found to provide suScient resolution. The model

was studied over a range of values of a and b. The
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meandering transition was found to occur by increasing
h at fixed a or decreasing a at fixed B. We only report
here the results of a detailed study of the transition as a
function of 6 for a=0.665. Similar results were ob-
tained for other values of 0;. In this parameter range the
ratio between the fast and slow time scales is already
small in the present model (r/T-1/10 for an isolated
pulse).

The dynamics of spiral rotation was explored by two
diA'erent methods: (a) by the conventional method of
studying the trajectories of the spiral tip, ' " defined
here to be the point of vanishing normal velocity on the
spiral contour u =0 which lies inside the narrow excitory
region; (b) by studying the spatiotemporal behavior of
the variables near the spiral center (one variable suffices
and u was selected here). This method provides an in-

dependent source of information which helps character-
ize the unstable mode of the system and allows a more
precise quantitative characterization of the transition.

Two separate branches of circularly rotating spiral-
wave solutions were found in the neighborhood of the
meandering transition. The hole radius determined from
the circular trajectory of the spiral tip and the rotational
frequency are denoted by R " and f ", respectively.
The index n =0, 1 numbers the two branches of solutions.
First, consider the n =0 branch. R (f ) decreases
(increases) monotonously with increasing 8 until the on-
set of compound rotation at 8=8, (the exact value

8, = —1.09886 is determined below from the zero cross-

ing of the decay rate of perturbations as a function of 6).
Deviations from circular rotation increase continuously
for 8) 8, and the transition is completely reversible.
The quantitative nature of this transition was obtained

by means of method (b) above. For steady-state rota-
tion, the value of (u ",v(")) at the center of rotation is

given by the fixed point (b, 3b —8 ) of Eq. (1). It can
easily be shown that the analytic behavior of the fields in

the neighborhood of the fixed point must be of the form
of the lowest nondiverging eigenfunction of the Lapla-
cian operator. ' In a fixed (nonrotating) frame defined

by the standard polar coordinates (r, 8) we must have

u " (r, 8, t) =8+C "re' " "' +O(r )+c.c. , (2)

where t "' is trivially related to u("I by Eq. (lb). The
position (x„y,) of the center corresponding to r =0 in

Eq. (2) (which generically does not coincide with a lat-
tice point), and C " can be determined accurately from
the amplitude of the periodic time signals u;, (t) of three
lattice points on a square enclosing the center. Once the
center is determined, time signals from other nearby lat-
tice points provide a measure of u " (r, 8, t) at a discrete
set of values of r =r;i = [(x; —x, ) + (yi —y, ) ] '

The transition was studied from the time signals
u;, (t) on a 3x 3 sublattice enclosing the spiral center in

the long-time asymptotic state of the system. Above the
transition, time signals of u; J(t) away from the spiral
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FIG. 1. Radial dependence of the amplitudes characterizing
the two frequencies of the quasiperiodic time signals near the
spiral center for b= —1.09865. Each solid circle corresponds
to one lattice point on the 3x3 sublattice enclosing the spiral
center. Consistent behavior is found with the small-r analyti-
cal forms irk

' (r)i C' r and i8(r)i =const. For comparison
the primary radius of tip orbits R l =2.2 at the same value of 8.

center generally contain two frequencies (fi&,f2q) with a
higher harmonic structure. Increasingly near the center,
however, higher harmonics become small and the time
signals can be simply characterized in terms of two oscil-
lating modes with complex amplitudes (A,B): u; i(t)

tion (6(8,) we recover iA (r)i =C r and B(r) =0.
The characteristic variations of the amplitudes with r
above the transition are shown in Fig. 1 for 6
= —1.09865. The form iA (r) i

=C r persists at the
transition and the amplitude B(r) of the secondary fre-
quency is found to be nearly independent of r. Since
B(r) approaches a constant at the origin, analytic con-
sistency of the solution implies that the corresponding
mode be independent of 8, with the first corrections of
order r . The numerical findings therefore imply that
the asymptotic form of u at small r in the quasiperiodic
regime can be written as follows (this behavior is also
consistent with the requirement that linearly unstable
modes of the system be orthogonal to the null space of
the linearized operator around steady-state solutions' ):

u(r, 8,1) =b+C' 're " +Be " +O(r )+c.c.

(3)
Next, the quantitative nature of the transition to

quasiperiodic behavior was determined by studying the
variations with 8 of the decay rate of perturbations
slightly below the transition, and of the amplitude iB i in

the long-time asymptotic state slightly above the transi-
tion. The relaxation dynamics of perturbations generat-
ed by suddenly increasing b to a new value was studied
from the time signals of the u;, (t) on the 3x3 center
sublattice. Simulations as long as a 100 rotation periods
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were necessary to extract accurately the decay rate and

the asymptotic value of ~B~ close to the transition.

~B(t)~ was found to obey an exponential decay form

~B(r)~-exp(crr) (over two decades of amplitude). The

decay rate was found to vanish linearly with s (at
6=8, = —1.09886), and the saturation amplitude ~B~

above the transition was found to obey the square-root
behavior characteristic of supercritical bifurcations:

~ 340 f (0)

0 86&0.5 '+ 0.01

(4a)

(4b)

An important consequence of the large numerical pre-
factor in Eq. (4a) is that the transition region to quasi-

periodic behavior is extremely narrow as a function 6 (tt

as well). For s-=10 the growth rate of perturbations
is already of the same order as the primary rotational
frequency. Consequently, the critical region [the range
of value of s where the scaling form of Eq. (4b) holds ac-
curately] is very small here. Significant deviations arise
for c-5X10

Since the transition occurs continuously from the n =0
branch the primary frequency fiq =lf ls=&, =5
X 10 +0(s) in the critical region. The Hopf frequen-

cy f2q, however, is not a priori determined. Numerical-

ly, we find interestingly that [f2q]z-z is onl~ a few per-

cent smaller than the primary frequency [f ' ]s-s of a
second branch (n =1) of circularly rotating spiral-wave

solution which remains stable at 8=8, . The possibility
for the existence of two distinct spiral waves at small

hole radius was discussed previously in the context of a
modified FitzHugh-Nagumo model' and hysteretic
effects were found numerically in this model, with the
imposition of an artificial no-flux boundary condition at
the hole radius. ' Spirals on the n=0 and 1 branches

x(r)+iy(1) =QRje'" ". (5)

and their respective hole radii below the transition are
shown in Fig. 2. The n =1 branch is reached discontinu-
ously from the n=0 branch when 6 is decreased below

some value Bml„' & Br. The n =1 branch terminates with

a discontinuous transition to the quasiperiodic state
reached continuously from the n =0 branch if 6' is in-

creased beyond some value 8 '.,„)6,. (here 6;„'
= —1.103 and 8".,„=—1.097). The prolonged stability
of the n =1 branch with increasing 6 (i.e., decreasin~
R ' ' and R t' ) is consistent with the fact that R '

& R . Since the two branches are clearly distinct and
do not intersect at 8,-, the closeness of f ' and f2q sug-

gest that the linearly unstable mode of the n =0 branch
is strongly related to the n =1 branch. During com-

pound rotation, the spiral arm is seen to oscillate be-
tween two structures which approximate in turn the
steady-state arms of the n =0 and 1 branches as shown

in Fig. 3.
Spiral-tip orbits in previous numerical and experimen-

tal studies were found to be well approximated by epicy-
cles. ' ' The frequency spectrum of one of the coordi-
nates [x(t) here] of the spiral tip was used here to inves-

tigate the nature of the orbits. Typical spectra of x(t) at
two values of 6 above the transition are shown in Fig. 4.
More generally, the tip orbits can be characterized in

terms of multiple epicycles of the form

+pi - "~
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FIG. 2. Spirals from two separate branches (n =0, 1) of cir-
cularly rotating solutions for b = —1.102 & 6, . R "' =3.3,f"' 3.8X10, R' '=2.4, and f' '=4.7X10 '. Compound
rotation originates continuously from the small-hole-radius
branch (n 0).

FIG. 3. Time sequence of the fast variable u for 6= —1.090
with 256X 256 Fourier modes [time increases clockwise from
upper-left with —,

' of the primary rotation period ( f~„)be-

tween each frame]. The color coding of u is indicated in the
left-hand column ~here u varies linearly from —2 to 1.8. A
narrow red coding around u =8 was chosen to bring out the dy-
namics of the core region.

2826



VOLUME 65, NUMBER 22 PHYSICAL REVIEW LETTERS 26 NOVEMBER 1990

(a)—

1.0
: f,,—f„

2f„—f„
n.n MC,

0.00 0.0~ ().04 0.06 0.08 0.10

frequency

2.0
(b)-

8= —1.090

1 0

2f„—f„

The radii (RJ ) in Eq. (5) are given by the magnitudes of
the peaks in the spectra at the corresponding frequencies
(FJ ). It is apparent from Fig. 4(a) that, even outside the
critical region, the orbits are well approximated by a
simple epicycle with F~ =f~q (f~q=f +0( )]sand
F2=f~q f2q (F~/F2=—4.6). However, other peaks are
present in the spectrum of x(t) and the question arises as
to how the radii of the different peaks scale with s in the
critical region. To answer this question, consider the
weakly nonlinear analysis of the n =0 branch of circular-
ly rotating waves, in a rotating frame of reference (r, p)
=(r,8 2rrf r). If the trans—ition occurs via a standard
supercritical Hopf bifurcation, as strongly implied by the
forms of Eqs. (3), (4a), and (4b), then the variable u in

the critical region should have the general scaling form

u(r, p, t) =u (r,p)+r. 'i U(r, p)e ~ +c c +O(s), . .

where U(r, p) is parallel to the u component of the un-

stable eigenvector with eigenvalue rJ+i2nf2q and could,
in principle, be determined by a linear stability analysis

n. n iJ.V
0.00 0.02 0.04 0.06 0.00 0 10

frequency

FIG. 4. Frequency spectrum of x(r) for (a) b= —1.096
(a=0.003) and (b) b= —1.090 (s 0.009). The magnitudes

of the peaks determine the radii of the spiral-tip orbits.

of the n=0 branch. It follows from this general form
that the tip trajectories [defined implicitly here by
u(r, p, r) =0 and Bu/r)t —2rrf Bu/r)&=0] must be to
lowest order in e' epi-epicycles with F~ and F2 as de-
fined above, F3=f~q+f2q, R~ =R +O(~), R2 -s'
and R3-e' . Numerically we found consistent scaling
behavior with R2=-12m — but R3 was too small to
be determined accurately in the critical region. The ad-
ditional peaks in the spectrum at 2f2q —

f~q and 3fqq
f~q

—correspond to higher harmonics of the unstable
mode whose magnitudes should scale respectively as
~8~ —s and ~8 ~

—s i in the critical region. As seen in

Fig. 4, outside the critical region R3 saturates to a small
value while Rq and the first harmonic peak at 2f2q f~q-
continue to grow with increasing e. Further away from
the transition the spectra of x(r) become increasingly
richer in harmonic content but compound rotation main-
tains a high degree of regularity. It would be valuable to
extend the present study to other models of excitable
media in order to determine the degree of universality of
the meandering transition.
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