Variational Eigenvalues for the Rydherg States of Helium: Comparison with Experiment and with Asymptotic Expansions

G. %. F. Drake

Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 (Received 25 July 1990)

High-precision variational eigenvalues are presented for a range of helium Rydberg states up to $n = 10$ and \bar{L} =7. Convergence to a few parts in 10¹⁸ is obtained for many of the nonrelativistic eigenvalues. The results allow a clear assessment of the accuracy of asymptotic expansion methods extensively developed for states of high angular momentum. After adding relativistic and radiative corrections, a comparison with new high-precision measurements for transitions among the $n = 10$ states is made. Contributions from the long-range Casimir-Polder effect are discussed.

PACS numbers: 31.20.Di, 31.30.Jv

The energy splittings among the $n = 10$ state of helium have recently been the subject of intense study, both theoretically and experimentally. On the experimental side, improvements in accuracy to better than ± 1 kHz for the measured splittings' make the measurements sensitive to small radiative and retardation effects of the Casimir-Polder type.^{2,3} The latter, which have never been clearly verified experimentally, provide a primary motivation for the high-precision measurements. However, all the ordinary (nonretarded) contributions must first be known to sufficient precision so that they can be subtracted from the measured intervals.

On the theoretical side, the $n = 10$ states lie in the intermediate range of excitation dividing low-lying states, where established variational methods for the entire two-electron wave function are applicable, and highlying states where asymptotic expansion methods based on a core-polarization model become extremely accurate.⁴ In the latter model, exchange effects are neglected, and the outer electron is regarded as moving in the field of a polarizable core consisting of the nucleus and a tightly bound inner electron. As the degree of excitation increases, traditional variational methods deteriorate rapidly in accuracy while the core-polarization model becomes progressively more accurate, especially with increasing angular momentum L . Recent advances in variational technique^{5,6} now make it possible to extend high-precision variational calculations into the intermediate nL range, thereby allowing an assessment of the accuracy of the truncated asymptotic expansions generated by the core-polarization model.

The purpose of this Letter is to report the results of variational calculations for a range of states up to $n = 10$ and $L = 7$ with the dual purpose of comparing with the new measurements, and with the core-polarization model. The nonrelativistic eigenvalues obtained in this work are the most accurate variational bounds in the literature for any few-body system.

The method of calculation has been described previously, 5.6 and is only briefly summarized here. The method is an extension of the older Hylleraas-type variational calculations. Here, the two-electron wave function is expanded in the finite basis set

$$
\Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{l_1, l_2} \sum_{p} \sum_{i, j, k} a_{ijk}^{(i)} r_1^i r_2^j r_1^k \exp[-\alpha^{(i)} r_1 - \beta^{(i)} r_2] (l_1 l_2; L) \pm \text{exchange},
$$
\n(1)

where $r_{12} = |r_1 - r_2|$ is the interelectronic coordinate, $(l_1l_2;L)$ denotes a vector-coupled product of spherical harmonics to form a state of total angular momentum L , t denotes the collection of labels (l_1, l_2, p) , the $a_{ijk}^{(t)}$ are linear variational coefficients, and the sum over i, j, k is such that $i+j+k \leq N$, with N an integer which is progressively increased to systematically enlarge the basis set. The sum over l_1, l_2 covers the values

$$
(l_1, l_2) = (0, L), (1, L - 1), \dots, (L/2, L - [L/2]), (2)
$$

as required for completeness. The novel features in the present work include the sum over p , which allows each combination of powers i, j, k to appear more than once combination of powers i, j, κ to appear more than once
with different exponential scale factors $\alpha^{(t)}$ and $\beta^{(t)}$, thereby producing a "doubled" basis set. This is crucial

for excited states because at least two distance scales in fact need to be represented for each electron. In addition, the screened hydrogenic wave function $\Phi_{1s}(\mathbf{r}_1, Z)$ $x \Phi_{n}(\mathbf{r}_2, Z-1)$ is included explicitly in the basis set with an independent linear variational coefficient, and a complete optimization is performed with respect to the $\alpha^{(t)}, \beta^{(t)}$. The results with up to 750 terms show good numerical stability when performed with 80-bit (extended precision) arithmetic on a Definicon DSI/780 board. The longest calculation takes less than an hour of microcomputer time. All the final results were checked with 120-bit (quadruple precision) arithmetic.

For high- L states where exchange effects are negligible, the main source of uncertainty in the corepolarization model is the nonrelativistic energy, rather than the smaller relativistic and radiative corrections. Table I shows the nonrelativistic variational eigenvalues for infinite nuclear mass obtained in this work, expressed as a correction ΔE to the screened hydrogenic energy

$$
E_{\text{SH}} = -2 - 1/2n^2 \text{ a.u.}
$$
 (3)

Except for the $10G$ and $10H$ results published previously,⁶ these are the first variational calculations for $L > 3$. The final results were extrapolated below the variational upper bounds by studying the convergence with increasing N up to about 700 terms. The numbers in parentheses in Table I indicate the total amount of extrapolation in the final figure quoted, and can be taken as a conservative estimate of the uncertainty. Many of the eigenvalues have converged to better than $\pm 10^{-18}$ a.u. The singlet-triplet splittings remain clearly resolved for all states up to 10I, but are no longer visible to this degree of precision for the K states. Full details of the calculations will be presented in a future publication.

Table II compares the singlet-triplet average of the energies in Table I with the asymptotic expansion method of Drachman,⁴ computed according to his prescription

$$
\Delta E = V_4 + V_6 + \frac{1}{2} (V_7 + V_8) + \Delta_2 \pm \frac{1}{2} (V_7 + V_8), \quad (4)
$$

where V_i is the core multipole contribution proportional to $\langle R^{-1} \rangle$ and Δ_2 is the second-order dipole correction. It is clear that the spectacularly good agreement found previously⁶ for the 10G and 10H ($L=4$ and 5) states is a fortuitous coincidence caused by a crossing of the two

TABLE I. Variational eigenvalues for the Rydberg states of helium, expressed as a correction ΔE_{nr} to the screened hydrogenic energy E_{SH} [see Eq. (3)]. Units are 10^{-7} a.u. $=$

L \boldsymbol{n}	$\Delta E_{\text{nr}}(\text{singlet})$	$\Delta E_{\rm nr}$ (triplet)	
5 $\overline{4}$	$-7.10898584711(4)$	$-7.10925343922(2)$	
$\overline{4}$ 6	$-4.5649842434(3)$	$-4.5652806407(3)$	
4 7	$-3.0459211947(5)$	$-3.0461756486(5)$	
4 8	$-2.1149402399(1)$	$-2.1151442474(1)$	
$\overline{4}$ 9	$-1.5212141342(7)$	$-1.521374920(1)$	
10 $\boldsymbol{4}$	$-1.1276431780(2)$	$-1.1277700278(4)$	
5 6	$-1.458653908316(4)$	$-1.45865412665(1)$	
5 $\overline{7}$	$-1.01173828962(2)$	$-1.01173858977(1)$	
8 5	$-0.7182865580(1)$	$-0.7182868573(1)$	
5 9	$-0.523974464(1)$	$-0.523974732(1)$	
5 10	$-0.3921439451(1)$	$-0.3921441740(1)$	
6 7	$-0.389735382601(1)$	$-0.389735382737(1)$	
6 8	$-0.285495845850(2)$	$-0.285495846075(4)$	
6 9	$-0.212262097328(9)$	$-0.212262097577(6)$	
6 10	$-0.160865161922(2)$	$-0.160865162169(2)$	
7 8	$-0.125702293050(0)$	-0 125702293050(0)	
9 7	$-0.095901569403(0)$	$-0.095901569403(0)$	
7 10	$-0.073883758766(2)$	$-0.073883758767(4)$	

sets of calculations near $n=10$. In general, the differences listed in the last column of Table II are about the same as, or slightly larger than, the estimated error of $\pm \frac{1}{2}(V_7 + V_8)$ [see Eq. (4)] due to the truncation of the asymptotic expansion. On the whole, this provides a remarkably good estimate of the error.

Turning now to the comparison with experiment, Table III summarizes the contributions to the energy for the $10I$ and $10K$ states. The entries in the table are as follows. ΔE_{nr} is the correction to the screened hydrogenic energy E_{SH} , $\Delta E_M^{(1)}$ and $\Delta E_M^{(2)}$ are the first- and second-order mass polarization corrections, ΔE_{rel} is the relativistic correction, ΔE_{anom} is the anomalous magnetic moment correction, ΔE_{st} is the singlet-triplet mixing correction, $(\Delta E_{RR})_M$ is the relativistic reduced-mass correction from the mass scaling of the Breit interaction together with the Stone⁷ terms, $(\Delta E_{RR})_X$ is a secondorder cross term between the Breit interaction and the mass polarization operator, and $\Delta E_{L,1}$ and $\Delta E_{L,2}$ are one- and two-electron Lamb-shift corrections. Detailed expressions for all of these terms have been given previously, 5 and will not be repeated here. All are expressed relative to the He⁺($1s$) state. Combining these with the 10G and 10H results published previously⁶ yields the comparison with experiment shown in Table IV.

Before discussing the results, a word of clarification is necessary concerning retardation effects. The main part of what Au and co-workers^{3,8} refer to as retardation is

TABLE II. Comparison of the spin-averaged variational eigenvalues $\Delta \bar{E}_{var}$ from Table I with the values $\Delta \bar{E}_{pol}$ from the core-polarization model (in MHz).

L	\boldsymbol{n}	$\Delta E_{\rm var}$	Δ $\bar{E}_{\rm pol}$	difference
4	5	$-4676.93484501(2)$	-4677.0794 ± 1.01	0.144
$\boldsymbol{4}$	6	$-3003.3011205(2)$	-3003.3636 ± 1.19	0.063
$\overline{\mathbf{4}}$	7	$-2003.9288573(4)$	-2003.9559 ± 1.04	0.027
$\overline{\mathbf{4}}$	8	$-1391.4401873(1)$	-1391.4521 ± 0.84	0.0118
4	9	$-1000.826507(1)$	-1000.8316 ± 0.66	0.0051
4	10	$-741.8935917(2)$	-741.8955 ± 0.52	0.0020
5	6	$-959.61668162(1)$	-959.6281 ± 0.0022	0.0144
5	7	$-665.60066508(1)$	-665.6052 ± 0.0074	0.0045
5	8	$-472.5451674(1)$	-472.5461 ± 0.0105	0.0009
5	9	$-344.711466(1)$	-344.7108 ± 0.0106	-0.0007
5	10	$-257.9830286(1)$	$-257.9817+0.0097$	-0.0013
6	7	$-256.3984126065(4)$	-256.40021 ± 0.00161	0.00180
6	8	$-187.821493674(2)$	-187.82280 ± 0.00103	0.00131
6	9	$-13964260691(1)$	$-139.64349+0.00059$	0.00088
6	10	$-105.829683489(1)$	$-105.83027+0.00032$	0.00059
7	8	$-82.6967984749(0)$	-82.69709 ± 0.00028	0.00029
7	9	$-63.0915519990(2)$	-63.09180 ± 0.00023	0.00025
7	10	$-48.606514337(2)$	-48.60671 ± 0.00018	0.00019
8	9		-30.71236 ± 0.00005	
8	10		-24.17868 ± 0.00005	

$101I_6$ Term	$10 \; 31_5$	10 ³ I ₆	$10 \frac{3}{7}$	10^{-1} K ₇	$10~3$ K ₆	10^{-3} K ₇	103K ₈
ΔE_{net} -105.82968	-105.82968	-105.82968	-105.82968	-48.60651	-48.60651	-48.60651	-48.60651
$\Delta E_{\rm M}^{(1)}$ -0.02891	-0.02891	-0.02891	-0.02891	-0.01330	-0.01330	-0.01330	-0.01330
$\Delta E_{\rm M}^{(2)}$ -0.61807	-0.61807	-0.61807	-0.61807	-0.61806	-0.61806	-0.61806	-0.61806
ΔE_{rel} -13.77802	-11.12404	-14.09883	-15.44622	-10.20270	-8.27782	-10.41123	-11.49067
$\Delta E_{\tt anom}$ 0.00000	0.00094	-0.00149	0.00060	0.00000	0.00059	-0.00097	0.00040
$\Delta E_{\rm st}$ 6.08749	0.00000	-6.08749	0.00000	4.58476	0.00000	-4.58476	0.00000
$(\Delta E_{\rm RR})_{\rm M}$ -0.00687	-0.00822	-0.00687	-0.00589	-0.00540	-0.00639	-0.00540	-0.00465
$(\Delta E_{RR})_X$ 0.00621	0.00683	0.00630	0.00568	0.00474	0.00520	0.00480	0.00434
$\Delta E_{\rm L,1}$ -0.00261	-0.00261	-0.00261	-0.00261	-0.00116	-0.00116	-0.00116	-0.00116
$\Delta E_{L,2}$ -0.00348	-0.00348	-0.00348	-0.00348	-0.00226	-0.00226	-0.00226	-0.00226
-114.17394 Total	-117.60724	-126.67114	-121.92858	-54.85990	-57.51972	-64.23887	-60.73188

TABLE III. Contributions to the 10*I* and 10*K* state energies of ⁴He relative to He⁺(1s) (in MHz). Ry_∞ =109737.315709 cm⁻¹, Ry_M = 109722.273515 cm⁻¹, α ⁻¹ = 137.0358985, and μ/M = 0.0001370745620.

included automatically in the present calculations through the H_2 orbit-orbit interaction term in the Breit interaction, and the $\Delta E_{L,2}$ two-electron QED correction These two terms correspond to the leading two terms in the expansion of the retardation potential due to twophoton exchange^{2,3,8} (in atomic units)

$$
\Delta V_{\text{ret}} = \frac{a^2}{4} \left(\frac{a_0}{R} \right)^4 - \frac{7a^3}{6\pi} \left(\frac{a_0}{R} \right)^3 + O(a^4 (a_0/R)^2). \quad (5)
$$

TABLE IV. Comparison of theory and experiment for the $10G-10H$, $10H-10I$, and $10I-10K$ transition frequencies of ⁴He (in MHz). The weighted mean transition frequencies are calculated from Eq. (6) of Ref. 10.

Transition	Experiment ^a	Theory	Difference
${}^{1}G_{4} - {}^{1}H_{5}$	486.8622(7)	486.8612	0.0010(7)
${}^{3}G_{3} - {}^{3}H_{4}$	488.6677(9)	488.6663	0.0014(9)
${}^{3}G_{4} - {}^{3}H_{5}$	495.5571(6)	495.5578	$-0.0007(7)$
${}^{3}G_{5} - {}^{3}H_{6}$	491.9668(7)	491.9662	0.0006(6)
$(G-H)$ mean	491.0087(5)	491.0082	0.0005(5)
${}^{1}H_{5} - {}^{1}I_{6}$	154.6689(4)	154.6686	0.0003(4)
${}^{3}H_{4} - {}^{3}I_{5}$	155.8155(5)	155.8150	0.0005(5)
${}^{3}H_{5} - {}^{3}I_{6}$	159.6490(5)	159.6496	$-0.0006(5)$
${}^{3}H_{A} - {}^{3}I_{7}$	157.6299(4)	157.6305	$-0.0006(4)$
$(H-I)$ mean	157.0535(2)	157.0537	$-0.0002(2)$
${}^{1}I_{1} - {}^{1}K_{7}$	59.3131(4)	59.3140	$-0.0009(4)$
${}^{3}I_{5} - {}^{3}K_{6}$	60.0876(5)	60.0875	0.0001(5)
${}^{3}I_{6} - {}^{3}K_{7}$	62.4320(4)	62.4323	$-0.0003(4)$
${}^{3}I_{7} - {}^{3}K_{8}$	61.1966(3)	61 1967	$-0.0001(3)$
$(I-K)_{mean}$	60.8165(2)	60.8168	$-0.0003(2)$

"Reference 1.

What is missing is the small $(< 1$ kHz) Casimir-Polder long-range deviation of H_2 and $\Delta E_{L,2}$ from the shortrange forms used here. Taking the difference betwee the fully retarded values^{2,3,8} and the results of Eq. (5) gives additional contributions of -0.720 , -0.454 , and -0.305 kHz, respectively, to the G-H, H-I, and I-K transition frequencies. It is only at this level that retardation effects are not included in the present calculation, and might appear as a discrepancy between the calculations and experiment. This is the part which reflects the incipient change in the power-law dependence of the long-range potential predicted by the Casimir-Polder effect.

The results in Table IV show that discrepancies of 1.0 ± 0.7 and 1.4 ± 0.9 kHz are present for two of the four G-H magnetic structure transitions. This is too large and in the wrong direction to be explained by the above residual retardation effects. However, for this transition, there is a fairly large one-electron QED correction (denoted by $\Delta E_{L,1}$ in Table III) of -12.8 kHz coming primarily from the core-electron Lamb shift. It may be that the simple screening approximation used to calculate it^{6.9} is not adequate. The effect of the correction is to produce a common shift to all four magnetic structure components. For the H-I and I-K transitions, the corresponding QED corrections reduce to -3.96 and -1.45 kHz, respectively. For these transitions, the discrepancies for the weighted mean of the four magnetic structure components¹⁰ are -0.2 ± 0.2 and -0.3 ± 0.2 kHz in the two cases.¹ This is nearly within experimental error, but including the above retardation corrections changes the discrepancies to 0.25 ± 0.2 and 0.0 ± 0.2 kHz, respectively. This is clearly an improvement for the $I-K$ transition for which the theoretical QED correction should be the most reliable. To this marginal extent, the experimental results show evidence for the change in the power-law dependence predicted by the Casimir-Polder effect.^{2,3,8} The total retardation potential due to two-photon exchange is verified to better than 10% as stated in Ref. 1.

In conclusion, this paper presents high-precision variational calculations for a range of Rydberg states up to $n = 10$ and $L = 7$. The results clearly establish the validity of accuracy estimates for asymptotic expansions based on a core-polarization model. Combining the latter with variational results up to $n = 10$ covers nearly all states of helium (and by extension, two-electron ions). It is only the high-n, low-L states which remains an open problem. Comparison with experiment verifies the total long-range retardation potential to better than 10% and shows marginal evidence for the change in the power-law dependence predicted by the Casimir-Polder effect. The weakest part of the calculation, which still requires further work, is the evaluation of radiative corrections for Rydberg states. A full account of this work will be presented in a forthcoming publication.

I wish to thank Stephen Lundeen for communicating his experimental results in advance of publication. Research support by the Natural Sciences and Engineering Research Council of Canada and a fellowship awarded by the Killam Foundation is gratefully acknowledged.

'E. A. Hessels, F. J. Deck, P. W. Arcuni, and S. R. Lundeen, preceding Letter, Phys. Rev. Lett. 65, 2765 (1990).

²J. F. Babb and L. Spruch, Phys. Rev. A 38, 13 (1988).

3C.-K. Au, G. Feinberg, and J. Sucher, Phys. Rev. Lett. 53, 1145 (1984); G. Feinberg, J. Sucher, and C.-K. Au, Ann. Phys. (N. Y.) 173, 355 (1987).

4R. J. Drachman, Phys. Rev. ^A 26, 1228 (1982); 31, 1253 (1985); 37, 979 (1988).

⁵G. W. F. Drake, Phys. Rev. Lett. **59**, 1549 (1987); Nucl. Instrum. Methods Phys. Res., Sect. B 31, 7 (1988); G. W. F. Drake and A. J. Makowski, J. Opt. Soc. Am. B 5, 2207 (1988).

6G. W. F. Drake, J. Phys. B 22, L651 (1989).

7A. P. Stone, Proc. Phys. Soc. London 81, 868 (1963).

"C.-K. Au, Phys. Rev. ^A 39, 2789 (1989); C.-K. Au and M. A. Mesa, *ibid.* 41, 2848 (1990).

 9 G. W. F. Drake, Phys. Rev. A 41, 1243 (1990).

 10 E. A. Hessels, F. J. Deck, P. W. Arcuni, and S. R. Lun deen, Phys. Rev. A 41, 3663 (1990).