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High-precision variational eigenvalues are presented for a range of helium Rydberg states up to n =10
and L =7. Convergence to a few parts in 10" is obtained for many of the nonrelativistic eigenvalues.
The results allow a clear assessment of the accuracy of asymptotic expansion methods extensively

developed for states of high angular momentum. After adding relativistic and radiative corrections, a

comparison with new high-precision measurements for transitions among the n =10 states is made. Con-

tributions from the long-range Casimir-Polder effect are discussed.

PACS numbers: 31.20.Di, 31.30.Jv

The energy splittings among the n =10 state of helium
have recently been the subject of intense study, both
theoretically and experimentally. On the experimental
side, improvements in accuracy to better than + 1 kHz
for the measured splittings' make the measurements sen-

sitive to small radiative and retardation eff'ects of the
Casimir-Polder type. The latter, which have never

been clearly verified experimentally, provide a primary
motivation for the high-precision measurements. How-

ever, all the ordinary (nonretarded) contributions must

first be known to sufficient precision so that they can be
subtracted from the measured intervals.

On the theoretical side, the n =10 states lie in the in-

termediate range of excitation dividing low-lying states,
where established variational methods for the entire
two-electron wave function are applicable, and high-

lying states where asymptotic expansion methods based
on a core-polarization model become extremely accu-
rate. In the latter model, exchange effects are neglect-
ed, and the outer electron is regarded as moving in the
field of a polarizable core consisting of the nucleus and a

tightly bound inner electron. As the degree of excitation
increases, traditional variation al methods deteriorate
rapidly in accuracy while the core-polarization model be-
comes progressively more accurate, especially with in-

creasing angular momentum L. Recent advances in vari-
ational technique ' now make it possible to extend
high-precision variational calculations into the inter-
mediate nL range, thereby allowing an assessment of the
accuracy of the truncated asymptotic expansions gen-
erated by the core-polarization model.

The purpose of this Letter is to report the results of
variational calculations for a range of states up to n =10
and L =7 with the dual purpose of comparing with the
new measurements, and with the core-polarization mod-

el. The nonrelativistic eigenvalues obtained in this work
are the most accurate variational bounds in the literature
for any few-body system.

The method of calculation has been described previ-

ously, and is only briefly summarized here. The
method is an extension of the older Hylleraas-type varia-
tional calculations. Here, the two-electron wave function
is expanded in the finite basis set

+(r~, r2) = g g g a Jk r'~rt2r ~2exp[ —a ' r
~

P' r2] (I ~I2,L) ~ ex—change,
ll l2 P i jk

where r~2=~r~ —
rq~ is the interelectronic coordinate,

(l~l2, L) denotes a vector-coupled product of spherical
harmonics to form a state of total angular momentum L,
t denotes the collection of labels (l~, lq, p), the a;~t, are
linear variational coefficients, and the sum over i,j,k is

such that i+j+k ~ N, with Ã an integer which is pro-

gressively increased to systematically enlarge the basis
set. The sum over I],12 covers the values

(ii, i2) =(O, L), (1,L —1), . . . , ([L/2], L —[L/2]), (2)

as required for completeness. The novel features in the
present work include the sum over p, which allows each
combination of powers i,j,k to appear more than once
with different exponential scale factors a ' and P ',
thereby producing a "doubled" basis set. This is crucial

for excited states because at least two distance scales in

fact need to be represented for each electron. In addi-
tion, the screened hydrogenic wave function @~,(r~, Z)
x@„t(r&, Z —1) is included explicitly in the basis set
with an independent linear variational coefficient, and a
complete optimization is performed with respect to the
a "i,Pt'. The results with up to 750 terms show good
numerical stability when performed with 80-bit (extend-
ed precision) arithmetic on a Definicon DSI/780 board.
The longest calculation takes less than an hour of micro-
cornputer time. All the fina results were checked with
120-bit (quadruple precision) arithmetic.

For high-L states where exchange eAects are negligi-
ble, the main source of uncertainty in the core-
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where V, is the core multipole contribution proportional
to (R ') and 62 is the second-order dipole correction. It
is clear that the spectacularly good agreement found pre-
viously for the 10G and 10H (L=4 and 5) states is a
fortuitous coincidence caused by a crossing of the two

TABLE I. Variational eigenvalues for the Rydberg states of
helium, expressed as a correction h,E„ to the screened hydro-
genic energy EsH [see Eq. (3)]. Units are 10 ' a.u.

L n

4 5

4 6

4 7

4 8

4 9

4 10

5 6

5 7

5 8

5 9

5 10

6 7

6 8

6 9

6 10

7 8

7 9

7 10

6E„,(singlet)

-7.10898584711(4)
-4.5649842434(3)
-3.0459211947(5)
-2.1149402399(1)
-1.5212141342(7)
-1.1276431780(2)

-l.458653908316(4)
-1.011?3828962(2)
-0.7182865580(1}
-0.523974464(1)
-0.3921439451(1)

-0.389735382601(1)
-0.285495845850(2)
-0.212262097328(9)
-0.160865161922(2)

-0.125702293050(0)
-0.095901569403(0)
-0.073883758766(2)

6E„„(tripl et)

-7.10925343922(2)
-4.5652806407(3)
-3.0461756486(5)
-2.1151442474(1)
-1.521374920(1)
-1.1277700278(4)

-1.45865412665(1)
-1.01173858977(1)
-0.7182868573(1)
-0.523974732(1)
-0.3921441740(1)

-0.389735382737(1}
-0.285495846075(4)
-0.212262097577(6)
-0.160865162169(2)

-0 125702293050(0)
-0.095901569403(0)
-0.073883758767(4)

polarization model is the nonrelativistic energy, rather
than the smaller relativistic and radiative corrections.
Table I shows the nonrelativistic variational eigenvalues
for infinite nuclear mass obtained in this work, expressed
as a correction AE to the screened hydrogenic energy

EsH = —2 —I/2n a.u.

Except for the 10G and 10H results published previous-
ly, these are the first variational calculations for L & 3.
The final results were extrapolated below the variational
upper bounds by studying the convergence with increas-
ing N up to about 700 terms. The numbers in paren-
theses in Table I indicate the total amount of extrapola-
tion in the final figure quoted, and can be taken as a con-
servative estimate of the uncertainty. Many of the ei-
genvalues have converged to better than + 10 ' a.u.
The singlet-triplet splittings remain clearly resolved for
all states up to 10I, but are no longer visible to this de-
gree of precision for the K states. Full details of the cal-
culations will be presented in a future publication.

Table II compares the singlet-triplet average of the en-
ergies in Table I with the asymptotic expansion method
of Drachman, computed according to his prescription

hE = V4+ V6+ —, (V7+ Vs)+62+ 2 (V7+ Vs) (4)

TABLE II. Comparison of the spin-averaged variational ei-
genvalues hF. .a. from Table I with the values hE~, ~ from the
core-polarization model (in MHz).

L n ~~var difference

4 5 -4676.93484501(2)
4 6 -3003.3011205(2)
4 7 -2003.9288573(4)
4 8 -1391.4401873(1)
4 9 —1000.826507(1)
4 10 -741.8935917(2)

5 6 -959.61668162(1)
5 7 -665.60066508(1)
5 8 -472.5451674(1)
5 9 -344.711466(l)
5 10 -257.9830286(1)

6 7 -256.3984126065(4)

6 8 —187.821493674(2}

6 9 —139 64260691(1)
6 10 -105.829683489(1)

7 8 -82.6967984749(0)

? 9 -63.0915519990(2)
7 10 &8.606514337(2)

8 9

8 10

-4677.0794+ 1.01

-3003.3636+1.19

-2003.9559+1.04

-1391.4521+0.84

-1000.8316+0.66

-741.8955+0.52

—959.6281+0.0022

-665.6052+0.0074

%72.5461+0.0105

-344.7108+0.0106

-257.9817+0.0097

—256.40021+0.00161
-187.82280+0.00103

-139.64349+0.00059

-105.83027+0.00032

—82.69709+0.00028

-63.09180+0.00023

-48.606?1+0.00018

-30.71236+0.00005

-24.17868+0.00005

0.144

0.063

0.02?

0.0118

0.0051

0.0020

0.0144

0.0045

0.0009
—0.0007
—0.0013

0.00180

0.00131

0.00088

0.00059

0.00029

0.00025

0.00019

sets of calculations near n=10. In general, the diAer-
ences listed in the last column of Table II are about the
same as, or slightly larger than, the estimated error of
~ —' (V?+ Vs) [see Eq. (4)] due to the truncation of the
asymptotic expansion. On the whole, this provides a re-
markably good estimate of the error.

Turning now to the comparison with experiment,
Table III summarizes the contributions to the energy for
the 10I and 10K states. The entries in the table are as
follows. AE„„ is the correction to the screened hydrogen-
ic energy EsH, hE~ and hE~ are the first- and
second-order mass polarization corrections, hE„,~ is the
relativistic correction, hE„.„, is the anomalous magnetic
moment correction, hE, &

is the singlet-triplet mixing
correction, (d E tea) ~ is the relativistic reduced-mass
correction from the mass scaling of the Breit interaction
together with the Stone' terms, (dEttR), t is a second-
order cross term between the Breit interaction and the
mass polarization operator, and GAEL ~

and GAEL z are
one- and two-electron Lamb-shift corrections. Detailed
expressions for all of these terms have been given previ-
ously, and will not be repeated here. All are expressed
relative to the He+(Is) state. Combining these with the
10G and 10H results published previously yields the
comparison with experiment shown in Table IV.

Before discussing the results, a word of clarification is
necessary concerning retardation eA'ects. The main part
of what Au and co-workers ' refer to as retardation is
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TABLE III. Contributions to the 101 and IOK state energies of He relative to He+(ls) (in MHz). Ry =109737.315709
cm ', RyM =109722.273515 cm, a =137.0358985, and p/M =0.0001370745620.

Term 10 IIII 10 3III 10 3I7 10 IK7 10 3K(I 10 3K7 10 3Kg

6E„, -105.82968

6EM (» —0.02891

6E~ (& ) —0.61807

b E i -13.77802

6E 0.00000

6E,q
6.08749

(EExx)g &.00687

(EExx)x 0.00621

6EI, , &.00261

6EL ) -0.00348

Total —114.17394

-105.82968

-0.02891

-0.61807

-11.12404

0.00094

0.00000

-0.00822

0.00683

-0.00261

-0.00348

-117.60724

—105.82968

-0.02891

-0.61807

-14.09883

-0.00149
-6.08749

-0.00687

0.00630

-0.00261

-0.00348

-126.67114

-105.82968

-0.02891

-0.61807

-15.44622

0.00060

0.00000

-0.00589

0.00568

-0.00261

%.00348

-121.92858

-48.60651

-4.01330

%.61806
—10.202?0

0.00000

4.58476

-0.00540

0.00474

-0.00116
-0.00226

-54.85990

-48.60651

-0.01330
-0.61806

-8.27782

0.00059

0.00000

-0.00639

0.00520

-0.00116
-0.00226

-57.51972

-48.60651

-0.01330
-0.61806

-10.41123
-0.00097
-4.58476

-0.00540

0.00480

-0.00116
-0.00226

-64.23887

-48.60651

-0.01330

-0.61806

-11.49067

0.00040

0.00000

-0.00465

0.00434

-4.00116
-0.00226

-60.73188

TABLE IV. Comparison of theory and experiment for the

10G-108, 108-10I, and 10I-10K transition frequencies of He

(in MHz). The weighted mean transition frequencies are cal-
culated from Eq. (6) of Ref. 10.

Transition Experiment& Theory Di Eference

IG IH

3G —3H
3 4

'G4 —'Hs

'G5 —'He

(G H)mean

'H5 —'I6

3H —3I
5

H~ — Iq

3H —3I
6 7

(H 1)mean

'I —'K,

3I5 —3K
q

3I —3K
6 7

3I —3K
7 8

(1 K)mean

486.8622(7) 486.8612 0.0010(7)

488.6677(9) 488.6663 0.0014(9)

495.5571(6) 495.5578 —0 0007(7)

491.9668(7)

491.0087(5)

491.9662

491.0082

0.0006(6)

0.0005(5)

154.6689(4) 154.6686 0.0003(4)

155.8155(5) 155.8150 0.0005(5)

159.6490(5) 159.6496 —0.0006(5)

157.6299(4) 157.6305 -0.0006(4)

157.0535(2) 157.0537 —0.0002(2)

59.3131(4)

60.0876(5)

62.4320(4)

61.1966(3)

60.8165(2)

59.3140 —0.0009(4)

60.0875 0.0001(5)

62.4323 —0.0003(4)

61 1967 -0.0001(3)

60.8168 -0 0003(2)

"Reference 1.

included automatically in the present calculations
through the H2 orbit-orbit interaction term in the Breit
interaction, and the AEL 2 two-electron QED correction.
These two terms correspond to the leading two terms in

the expansion of the retardation potential due to two-

photon exchange ' ' (in atomic units),
r a 4 le a 3

AV„, = — +O(a (ao/R)') . (5)
4 R 6z R

What is missing is the small (( I kHz) Casimir-Polder
long-range deviation of H2 and AEL 2 from the short-
range forms used here. Taking the difference between
the fully retarded values and the results of Eq. (5)
gives additional contributions of —0.720, —0.454, and
—0.305 kHz, respectively, to the G-H, H-I, and I-K
transition frequencies. It is only at this level that retar-
dation eAects are not included in the present calculation,
and might appear as a discrepancy between the calcula-
tions and experiment. This is the part which reflects the
incipient change in the power-law dependence of the
long-range potential predicted by the Casimir-Polder
effect.

The results in Table IV show that discrepancies of
1.0+0.7 and 1.4+ 0.9 kHz are present for two of the
four G-H magnetic structure transitions. This is too
large and in the wrong direction to be explained by the
above residual retardation effects. However, for this
transition, there is a fairly large one-electron QED
correction (denoted by AEL i in Table III) of —12.8
kHz coming primarily from the core-electron Lamb
shift. It may be that the simple screening approximation
used to calculate it is not adequate. The eff'ect of the
correction is to produce a common shift to all four mag-
netic structure components. For the H-I and I-K transi-
tions, the corresponding QED corrections reduce to
—3.96 and —1.45 kHz, respectively. For these transi-
tions, the discrepancies for the weighted mean of the
four magnetic structure components' are —0.2+ 0.2
and —0.3+0.2 kHz in the two cases. ' This is nearly
within experimental error, but including the above retar-
dation corrections changes the discrepancies to
0.25 ~ 0.2 and 0.0 ~ 0.2 kHz, respectively. This is clear-
ly an improvement for the I-E transition for which the
theoretical QED correction should be the most reliable.
To this marginal extent, the experimental results show
evidence for the change in the power-law dependence
predicted by the Casimir-Polder eAect. The total re-
tardation potential due to two-photon exchange is
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verified to better than 10% as stated in Ref. 1.
In conclusion, this paper presents high-precision varia-

tional calculations for a range of Rydberg states up to
n =10 and L =7. The results clearly establish the validi-
ty of accuracy estimates for asymptotic expansions based
on a core-polarization model. Combining the latter with
variational results up to n =10 covers nearly all states of
helium (and by extension, two-electron ions). It is only
the high-n, low-L states which remains an open problem.
Comparison with experiment verifies the total long-range
retardation potential to better than 10% and shows mar-
ginal evidence for the change in the power-law depen-
dence predicted by the Casimir-Polder efect. The weak-
est part of the calculation, which still requires further
work, is the evaluation of radiative corrections for Ryd-
berg states. A full account of this work will be presented
in a forthcoming publication.
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