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Molecular Theory of Associative Memory Hamiltonian Models of Protein Folding
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A molecular-level theory of the phase diagram of folding proteins is developed and applied to associa-
tive memory Hamiltonian models. Equilibrium collapse, folding, and glass transitions are described with

a unified variational treatment, and quantitative estimates of the capacity of recall are found.
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and

V'(rI) =g q,"q&"q; qj V(r;J —
r~j ) [1 —V(r; —r; )],

the prime indicating a sum on all memories other than the target. The coordinates of the folded target are [r j.
The noise can be treated statistically and introduces spin-glass transitions. Using replicas, the thermodynamic prop-

erties can be inferred from the average of lnZ over possible databases:
I

(2b)

There are two difficulties in determining protein struc- physics. Transition temperatures and the mechanism of
ture from sequence by computer simulation. Correct folding, however, depend on physics at the continuum
free-energy functions are riddled with local minima, un- cutoff, thus making necessary a theory at a molecular
related structurally to the folded protein. There is also level. We discuss here a unified mean-field theory for as-
the problem of finding the correct free-energy function. sociative memory Hamiltonians that treats the compet-
It is reasonable to try to infer an energy function from ing transitions. This theory can be used both for the
known examples. Both the local-minima problem and present models and for other atomistic models of pro-
the problem of pattern recognition can be studied using teins incorporating distance-constraint information.
spin-glass theory. ' A concrete realization of these The simplest associative memory Hamiltonians de-
ideas is provided by associative memory Hamiltonians scribe protein tertiary structure by the coordinates of the
which have been introduced by Friedrichs and Wolynes. backbone a carbons [r;]. Sequence information is encod-
These models use the spatial statistics of a database of ed by charges [q; ] which are usually related to hydro-
known structures to determine an energy function. phobicity, but may encode other properties. The connec-
Computer simulation of these models readily shows their tivity of the backbone is assured by harmonic-bond-
qualitative behavior. Deeper analytical understanding potential terms with spring constants adjusted to give the
can come from mean-field theories. Detailed theories of properties of the unfolded chain correctly. Exactly
random heteropolymer collapse and of models with analogously to the spin-spin interactions introduced in
unique folded structures have introduced many impor- Hopfield neural networks, 6 the interactions between
tant techniques. These studies rely largely on the con- different residues are given by the charge-density corre-
tinuous description of the chain, traditional in polymer

~

lation function over a database of proteins, giving

1V —
1 M

H=kttTA g (r; —r;+i) —P g q,"q,"q; q, V(r;, —r,j). (1)
i 1 p 1i j 1

The sum is over M database structures, [r,"] with charges [qfI We can .divide the interaction into the coherent part V,
arising from distance pairs in database proteins matching those of the folded target, and an incoherent part V, from
nonmatching distances which we treat as noise. For simplicity now, we take the pairs contributing to the noise as being
independent random variables, in distance and in charge. We write

V(rj. ,r~) = V(r~ —r~) 1++ q,"q~"q; q~ V(r~ r,";;)—

1
n n

[lnZ],„=lim —([Z"],„—1), [Z"]„= ++dr; +8 gr;
n On a i a, i

" H(r,')
exp

kgT av

(3)

For a large number of incoherent memories the noise statistics will be approximately Gaussian. A cumulant expansion
of Zn leads to an eff'ective Hamiltonian coupling diA'erent replicas:

n

H, tt=kttTQQA(r —r ~ i) —gg [V(r t, r j)],„= gg [V'(r ~) V'(r~I)],„. (4)
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F =(H, tr) —(H„,t) —kit TlnZ„, t. (6)

( ) denotes the thermal average with the reference
Hamiltonian. Because H„f is harmonic, Z„f and the

The interaction terms are given by the mean and vari-
ance of the interaction potentials.

This efI'ective Hamiltonian has a rich phase structure.
There will be an expanded random coil state, a folded
state in which the residues are localized near the folded
structure, and a liquidlike globule state compact com-
pared to the coil but having little organized three-
dimensional structure. Within the collapsed states, there
are glass transitions. Just as in crystallization from a
melt, the proximity to the glass transition aA'ects the rate
of folding.

The mean-field theory, therefore, must contain several
order parameters, taken as the radius of gyration of the
polymer, the mean-square deviation from the correct
folded structure, and an overlap order parameter for the
diA'erent glassy minima. A reference Hamiltonian is in-

troduced in which the energy terms reflect these order
parameters:

"' =Agg(r —r;+))'+8++(r,')'kgT
n n

+Cog(r —r; ) +QD,~Q(r,' —r,t') . (5)
a i a, p i

The term proportional to C measures the deviation from
the folded target and is related to the Debye-Wailer fac-
tor. 8 reflects the overall radius of gyration. The replica
coupling term determines the overlap of the glassy states.
The replica-symmetry breaking of this model resembles
the Potts glass; thus the matrix D,p exhibits one stage
of replica-symmetry breaking, having zeros on the diago-
nal and D for the oN'-diagonal related replicas. The
reference Hamiltonian is equivalent to a set of n/m poly-
mers in which the subunits are m-dimensional hyper-
tetrahedra coupled to the target structure harmonically
as in Fig. l. Mean-field values of C, 8, and D,p are ob-
tained, using the Peierls variation principle 8'F =0, where

FIG. 1. The interactions in the reference Hamiltonian are
those of n/m polymers of m-dimensional hypertetrahedra.

various expectation values can be calculated and, for any
specific choice of potential parameters and database
statistics, the variational equations solved numerically.
The explicit analytical expression of Eq. (6) will be
presented in a subsequent publication. For the sake of
simple formulas, we analyze a concrete model of the po-
tential and the database statistics. We choose the pair
interactions as Gaussians, V=(v/N) exp[ —e(rj —r/~) j,
and assume the database contains the target while the
pair distribution of residues for nontarget proteins in

the database can be approximated as a Gaussian, g(re)
=2v'(/zexp[ —((r,~) 1. Nontarget proteins have
charges equally likely to be positive or negative relative
to the target. With these assumptions the majority of
the folding energy comes from pairs distant in sequence.

Different limits can be used in the different phases. In
the coil and nonglassy globule phases, the parameter 8
alone determines the radius of the globule. Since A »8
» C =D in these phases, we can write the energy in
terms of the globule radius R which depends on 8/A.
The resulting free energy yields a first-order collapse
transition from the random coil state with R=N'/ to
the molten globule state with R =( ' at a temperature
kgTgg =M' N ' v.

First-order folding transitions can occur directly from
the coil state or from the molten globule. In the folded
phase, C will generally be larger than A. Retaining only
the lowest-order terms in A/C, the variational equation
for Cis

6 3 C n C—
nkvd TN ln ———Nv

8C 2 2 2m+ C
MN

4Q2kg T 2m+ C
=0. (7)

The limit of stability of the folded phase is given by
C~ (e/A)A. This is like the Lindemann criterion for
melting. The equilibrium transition temperature from
the globule is found, ho~ever, by equating the free ener-
gies of the molten globule and the folded phase with
nonzero C. This results in a reentrant phase transition
with an upper and a lower folding temperature which de-
pend on the number of memories:

kgb+= —MN "
v, kpTF =MN v.

in(C/~)

Notice that if the number of memories M exceeds rough-
ly N /'/ln(C/A), the folding transition disappears. This
indicates one limit on the capacity of the associative
memory models for uncorrelated memories. This capaci-
ty is larger than that found in simulations. It is interest-
ing that these models exhibit cold denaturation, which
has been observed in real proteins. ' There it is thought
to be an eAect coming from the temperature dependence
of hydrophobic interactions. The lower transition can be
preempted by a glass transition. When the number of
memories is small, the folding proceeds directly from the

2741



VOLUME 65, NUMBER 21 PHYSICAL REVIEW LETTERS 19 NOVEMBER 1990

b' 3
k ~Nx

—
1

1
2xD

nkvd T—N ln
BxD 2 x A

xD
28+xD

i 1/2

coil with a transition temperature depending on Hamil-
tonian parameters much as TF .

Both the globule state and the folded state have ideal
glass transitions at low temperature. The difficulty of
the search problem in folding is maximal at the globule
glass transition. In the random-energy approximation,
essentially all configurations must be searched at T~.
One expects slowing down to occur as TG is approached

n(x —1) )/3 xD
a+ xD

«=0

for these models too. To find Tr; the limit n 0 must be
taken with m taking the noninteger value x; 0~ x ~ 1.
Because there is only one level of replica-symmetry
breaking, the glass state is characterized by two parame-
ters: xD, measuring the Debye-Wailer factor of related
glassy states, and x itself, describing the size of the clus-
ters of related states. x measures the configurational
complexity below the phase transition. ' The variation-
al equation for xD is similar to that for C,

]/2 s

given a Lindemann stability criterion for xD, xD
~ (~/w)w.

The variational equation for x describes when obligate
thermodynamic freezing must occur. The ideal thermo-
dynamic glass transition occurs at

/2x "'U
kgTg-= (10)

din (xD/A )
We see that the glass transition temperature increases
with the number of memories and, indeed, since xD is

roughly the same as C, the glass transition temperature
is of the order of the folding temperature when M
reaches a value close to the capacity that we had already
determined from the reentrant phase transition.

In addition to the thermodynamic glass transition,
Potts glasses exhibit a dynamical transition in the mean-
field limit, wherein individual glassy states acquire ther-
modynamically large barriers between them. In the
viscous liquids, this corresponds to the onset of activated
motions, agreeing with the approximate mode-coupling
theories. Following the Potts-glass analogy, one evalu-
ates the temperature at which this occurs, kqT~, by re-

quiring the variational equation for xD to be satisfied,
extracting only the terms in the free energy proportional
to x —1. This gives k8 T~ =M '/ N ' v. For these
long-range models, activation barriers to rearrangement
arise soon after a globule is formed. Although the bar-
riers in this regime grow with the size of the protein,
they do so slowly. " For a protein of size 100, these bar-
riers may only be of order 10k~ T and can be overcome
by reasonably long annealing runs. Dynamics in the glo-
bular regime might be treated more effectively with glo-
bal Monte Carlo moves rather than local ones.

In summary, a rough phase diagram for the associa-
tive memory models can be obtained as in Fig. 2. More
precise phase diagrams are needed to carry out the op-
timization of parameters in associative memory Harnil-
tonians. The engineering goal of the computational pro-
tein folder is to obtain energy functions that easily reach
the global minimum. As in crystal nucleation from a
melt, the rate of nucleation reaches a maximum between
TF+ and Tg. The accurate variational expressions for
TF+ and T~ for different encodings of the protein se-
quence (choice of charges) will allow a route to an op-

t

timal folding code. The further consideration of corre-
lated databases, requiring only a rather straightforward
modification of the energy expression Eq. (6), will be
necessary, however.

The ideas used here to describe protein glass and fold-

ing transitions in associative memory models can be ex-
tended. The accuracy of structures determined from ex-
perimental distance constraints can be assessed with the
present formalism. More elaborate molecular Hamil-
tonians, including excluded volume, can be studied using
eA'ective harmonic reference systems. ' The replica
techniques and treatment of the statistics of misfolded
minima may be used in concert with computer simula-
tions to see what features of the sequence are used by na-
ture to avoid glass transitions and lead to efficient folding
mechanisms.
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FIG. 2. The phase diagram as a function of temperature
and number of uncorrelated memories. The phase RC is ran-
dom coil, MG the molten globule, F the folded state, G the
ideal glass state, and CD the cold denatured phase. The
diagram assumes /V =100, s/2 =4, and C/2A =D/2 =2. The
transition lines occur at kgTR( F =0.12v, kgTMg F =0.12v
—0.00065Mv, kg TMG F =0.00065Mv, and kp T~ =0.009
x I'/'&.
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