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Microemulsions: A Landau-Ginzburg Theory
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We present a Landau-Ginzburg theory for oil-water-surfactant mixtures with a scalar order parame-
ter y for the oil-water subsystem and a vector r for the surfactant part. A physical interpretation of the

parameters in terms of single-membrane energetics is given. A detailed density-functional calculation
yields three-phase coexistence between oil-rich, water-rich, and microemulsion phases, and modulated

phases including lamellar, columnar, and cubic phases. The computed structure factor for water in the

microemulsion phase shows a variety of trends in qualitative accord with experiments.
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Oil-water-surfactant mixtures exhibit' ' a variety of
phases and phase equilibria. Surfactant molecules re-

duce the bare oil-water interfacial tension and hence
favor the formation of bulk phases with a large density
of microscopic oil-water interfaces. Phase equilibria in

such systems can be quite complex; here we concentrate
on some of the experimentally observed phenomena.

Phenomenological ' theories have been successful in

accounting for some of these phases, their equilibria, and

the correlation functions found therein. In this paper we

present a simple Landau-Ginzburg theory for oil-water-

surfactant mixtures with many appealing features. We
discuss the results of a detailed, physically motivated
density-wave-theory analysis for the free-energy func-
tional obtained within a one-loop expansion. The phase

diagram includes three-phase coexistence between oil-

rich, water-rich, and microemulsion phases, and a
variety of modulated phases including lamellar, hexago-

nal, and cubic phases. The structure factor of the disor-
dered phase of the model is similar to that found in mi-

croemulsions, permitting us to identify this regime with

the microemulsion phase, in agreement with the predic-
tion of a lattice model we had developed earlier. '' The
dependence of various features of the structure factor on
diff'erent parameters shows trends similar to experimen-
tal systems. We provide a single-membrane interpreta-
tion of some of the coupling constants in terms of curva-
ture energies and use this to correlate different structure
factors with diA'erent microgeometries.

Our Landau-Ginzburg theory is based on two order
parameters, tlt and r: tit is large and positive (negative)
in the water-rich (oil-rich) phase and r characterizes the
surfactant part [!r! is large in surfactant-rich regions
and r(r) points in the direction of the heads of surfac-
tant molecules at r). We display the free-energy func-

!
tional that is oil-water symmetric: '

V= drj2' c~(Vtlt) + —, c2(V tlt) + —'c3(V y)'+ ~pa+ —. a. tit +a4y +a6tit

+ —, rp!r!'+ —, Ki(V r)-+r~tlt'!ri —r V(-Jitu+J2V'y)I.

The parameter c~ (&0) is a measure of the bare oil-
water interfacial tension. Since the surfactant molecules
can change the sign of c~, we include higher-order gra-
dients for stability. a~ is proportional to the diA'erence

between the chemical potentials of water and oil. The

parameters ro and K~ characterize the surfactant and are
chosen positive so that the surfactant subsystem does not
order on its own. The last three terms describe interac-
tions between r and y. r2 is a measure of the miscibility
of the surfactant in water and oil. The last two terms ac-
count for the amphiphilicity of the surfactant molecules:
Ji &0 favors surfactant molecules residing at oil-water
interfaces. The interpretation of the J2 term is discussed
below; a continuum approximation to a microscopic
model would naturally contain such higher-derivative
terms. Only terms quadratic in r are considered because
we will not address the ordering of surfactant molecules
in the absence of oil and/or water in this paper.
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An intuitive interpretation of the terms proportional to
c i, c ~, J i, and J~ can be obtained in the language ap-

propriate to interfaces, ' allowing us to make connec-
tions between our bulk theory and the interface approach
developed by others. ' " Assume that the interface
thickness is of order I, the length of a surfactant mole-

cule, and that the surfactant molecules are aligned ex-
actly along the local interface normal n, i.e., r =ron,
with ro the surfactant density at the interface. If +go
( tltp) is the bulk value of tlt in water (oil), then the
terms proportional to Ji and ci clearly represent sur-

face-tension eAects. Using elementary diAerential geo-
metry one can argue that the c2 term yields (2c2tltp/I)
x fds H and the J. term, Jqrpttrpfds(4H —2K), where

H is the local mean curvature, and K the local Gaussian
curvature. Thus by tuning ci, i 2, Ji, and J2 the eAective
surface tension and the curvatures of the internal micro-
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scopic interfaces that constitute the microemulsion phase
can be varied. If the eff'ective surface tension is negligi-
ble, then these interfaces are like the membranes en-
visioned by de Gennes and Taupin and the term propor-
tional to c2 incorporates the physics pointed out by them
for a single interface: When J I reduces the eAective
coefficient of the (Vy) term to zero, the c2fq nv ds

I

term leads to a logarithmic divergence for the appropri-

ate correlation function. A term which favors spontane-
ous curvature can be incorporated easily, e.g. , by adding
the term fd'r(V y)r Vlcc fHds to Eq. (1). The sign
of this term can be chosen to agree with Bancroft's rule:
The best solvent of the amphiphile is "outside. "

For nonzero r2 we have calculated the one-loop correc-
tion to the free-energy functional by integrating out the
surfactant degrees of freedom. Neglecting the q-de-
pendent corrections to the y term we obtain

+ y(q) y( —q)
2

fO

+ d'r[a~y(r)+[a4 —3r2~1z(0)]y (r)+a6y (r)j, (2)

where

1 A Jrp, A JK~

1 ro

A is the upper cutoA on the momentum, and

I/2
K[

I2(0) =
4~'K~

X

1+x
tan '(x)—

Q. 5

Q4—

with x =A(K~/ro) '~ . The complete expression including

odd terms will be reported elsewhere.
The form of the free energy in Eq. (2) has been used

for the calculations reported in this paper. We identify
the coefficient of the quadratic term as 2 [S '(q)] and

relabel the coefficient of the y term u and that of the y
term v for convenience. We have investigated the stabili-
ties of disordered and uniform oil-rich and water-rich

phases relative to periodically modulated phases —one-
dimensional (lamellar), two-dimensional (hexagonal),
and three-dimensional (various cubic) —by using a
density-wave theory of freezing. '

The phase diagram that we have obtained using a
density-wave theory (see below) is shown in Fig. 1 (for
u = —0.8, t =1.0, ro=0. 16, and Jt =0.39). There are
four phases: microemulsion, oil-rich, water-rich, and
lamellar. For small negative values of J2 and at lower
temperatures (or effective a2) the oil-rich and water-rich
phases coexist; as J2 becomes more negative, leading to a
finite-q peak in the structure factor, they give way to the
lamellar phase. At higher temperatures, a microemul-
sion phase is obtained. All phase boundaries are first or-
der which become continuous for positive u with a tri-
critical point in between. Note the line of three-phase
coexistence along which oil, water, and microemulsion
phases coexist. The interfacial tensions between these
coexisting phases is low for small u, i.e., in the vicinity of
a tricritical point. This mechanism for low interfacial
tensions is common to many lattice models of mi-

croemulsions. The dashed line in Fig. 1 is the disorder
line (not a phase boundary). To the left of it, S(q) has a
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FIG. 1. The phase diagram in the a2-J2 plane. Parameters
for this phase diagram are al =0, u = —0.8, v =1.0, Jl =0.39,
I p

=I('
I =0.16, el =c.= 1, and eq =

3 . Microemulsion and

lamellar phases are denoted, respectively, by M and L. The re-
gion marked 0-W shows where the oil-rich and water-rich
phases coexist (note a~ =0). The solid lines indicate first-order
phase boundaries which meet at a triple point. The dashed line
denotes the disorder line, to the left of which S(q) has only one

peak at q=0 and to the right of which there is a peak at
nonzero wave vector Q (see Fig. 2). The first-order transitions
become continuous via tricritical points if u becomes positive.
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q
FIG. 2. The structure factor S(q) in the microemulsion

phase of Fig. I. The lower curve (a =0.4, J2= —0.2) is ob-

tained in the region to the left of the disorder line of Fig. 1; the

upper curve (a~ =0.4, J..= —0.492), to the right of it and close

to the microemulsion-lamellar phase boundary whose proximi-

ty is signaled by the strong peak.
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peak only at zero (see lower curve in Fig. 2); to the right
of it, S(q) has a peak at nonzero q with the extremum at
q=0 either lower or higher than the peak at nonzero q.
The upper curve in Fig. 2 shows a structure factor with a
prominent peak at nonzero q. While we cannot control
the density variables explicitly, it is easy to argue that
decreasing ro leads to an increase in the surfactant con-
centration; when ro is decreased we find that the lamellar
phase is favored, in agreement with experimental
trends.

The density-wave-theory calculations were done by re-
taining the order parameters go=y(q =0) and y(Q),

where Q = ~G~. The 6's belong to the first set of
reciprocal-lattice vectors for the given periodic structure
and S(q) has a maximum at Q. A global maximum of
S(q) at Q favors ordering into a periodically modulated
phase at q =Q, whereas a maximum at q=O leads to a
uniform (oil- or water-rich) phase. For reasonable
values of r., the one-loop corrections lead to a negative
value of u. This results in three-phase coexistence be-
tween the microemulsion, oil-rich, and water-rich phases;
with increasing J~ and Jq, one expects to find coexistence
between microemulsion and spatially modulated phases.
A somewhat lengthy calculation leads to the following
eA'ective free energy within our density-wave theory:

P,fr= i yp[S '(0)[go+ 4 Nyg[S '(Q)]yg+uyo+3Nuyoyg+3u[-„' N(2N —I )+no]yg+t yo

+ —,
'

Nv yo yg +45 [ —, N (2N —I ) + n&] v yo yg

+ ~, t. [N+9N(N I )+6N—(N —1)(N —2)+9n&+144n&+72n&(N —4)+18n&na]yg . (3)

In the preceding, N denotes the number of reciprocal-
lattice vectors and na and n~ the number of distinct non-
coplanar quadrilaterals and triangles that can be formed
with the reciprocal-lattice vectors. We have minimized
the free energy numerically among the various compet-
ing phases. An aside on the calculation: When S(q) has
only one maximum at q =0, then we use S(Q) =S(Q*),
where Q* is the value of q at which a maximum appears
first as some parameter, say, J2, is varied. This simple
idea provides a natural way of suppressing modulated
phases when there is no peak in S(q) at finite q without
introducing any unphysical phase boundaries and
without resorting to extensive numerics. We have
checked the accessibility of the parameters used by solv-

ing numerically the coupled Dyson equations for the
self-energy to one-loop order. The details of these calcu-
lations will be reported elsewhere. '

We have also obtained the phase diagram in the pres-
ence of oil-water asymmetric terms. ' The inclusion of
the cubic term, i.e., the gy term, makes the hexagonal
(columnar) and bcc phases stable in difTerent parts of
parameter space; thus a variety of phases that occur ex-
perimentally are obtained within our density-functional
theory.

Experiments on microemulsions yield structure factors
with one or two maxima. In our model, neglecting the
asymmetry between oil and water, we have S~~=Sgg

Sow, where S~~ Soo, and Sow are the water-
water, oil-oil, and oil-water partial structure factors, re-
spectively. We now correlate our predictions for S~~
from our Landau theory and the microstructures they
imply with the experimental data.

Consider first the structure factor S~~(q) in the
disordered phase for J2 =0 when there is no free-energy
cost for configurations with large Gaussian curvature;
the structure factor can have only one maximum either
at q =0 or at q =Q&0. The coefficient of the q term in

[S(q)] ' can become negative, thus favoring the forma-

tion of a large density of oil-water interfaces. The value
of Q, where S(q) has a maximum, depends on c2. A
peak at q&0 in the disordered phase favors the forma-
tion of periodically modulated phases as emphasized ear-
lier (see Fig. 2). Thus when the disordered phase coex-
ists with uniform phases (oil and water rich), then S(q)
has a peak at q =0 and there may or may not be a small-
er peak at q =Q. The positive definiteness of cq implies
that the local curvature should be small. Therefore,
when the fraction of oil (or water) is small, a mixed
droplet phase occurs, whereas for nearly equal amounts
of oil and water a bicontinuous phase with low mean cur-
vature is favored.

For J2& 0, the energetics favor spherical droplets for
given values of the mean curvature. In this case, de-

pending on the value of J~/Jrp, one obtains a single
peak which can occur away from q =0 or two peaks.
The width of the peak is approximately half the peak po-
sition. This situation is similar to the experiments on
sodium di-2-ethylhexylsulfosuccinate (AOT), water, and
decane. We have checked that as ro decreases (i.e., as
the surfactant concentration increases) the peaks
broaden and move outward, reflecting the experimental
trend (the increase in a2 when ro decreases due to one-
loop eff'ects is important for this' ).

In the case J2 &0 we can also arrange to have two
peaks in the structure factor in the microemulsion phase,
one at q=0 and the other at q =Q&0. (This is the case
for parts of the phase diagram shown in Fig. 1.) The
width of the peak at Q is of the same order as Q itself
and is relatively insensitive to the parameter values. The
peaks in this case are slightly narrower than in the case
when J2 =0. Our conclusion that two peaks in the struc-
ture factor occur when the Gaussian curvature is large
and negative is consistent with previous results. ' As-
suming a cutoff A of the order of 2n/I, where I is the sur-
factant length, we find that the peak occurs at length
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scales that correspond to 15-20 times longer than I. For
moderate values of Jq, as ro is decreased (or as the sur-
factant concentration is increased), the second peak
moves outward and becomes sharper. Large and nega-
tive values of J2 favor configurations with internal inter-
faces that have large negative Gaussian curvature and
low mean curvature (since cq &0) leading to a phase
where the interface has many handles. This phase ~ould
correspond to the "plumber's-nightmare" phase, ' '

without long-range order. This can undergo a transition
into an ordered structure: We have checked by explicit

computation in the presence of oil-water asymmetric
terms that, as the value of J2 is tuned from negative to
positive, the morphology evolves from a cubic phase (to
be associated with a plumber's-nightmare phase with

long-range bcc order), through a first-order transition
into a tense bicontinuous structure (or a random, isotro-
pic microemulsion phase depending on the parameters),
and eventually into a cubic structure that can be associ-
ated with a droplet crystal. Such a scenario is present in

a schematic phase diagram of Ref. 15. Note that the in-

clusion of Gaussian curvature which allows eA'ectively

for the formation of passages and fusion of membranes is
crucial.
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