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A-8 Interface of Superfluid He: KH'ect of Phase Coherence
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Because of phase coherence across the 8-8 interface, the hypercooled phase transition is not an onset
phenomenon in this system, but rather the limiting behavior of very large interface velocities. At lower
velocities, the chemical potential is continuous across the interface and the growing 8 phase is colder
than the receding 2 phase.
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The first-order phase transition between the A and 8
phases of liquid He has, in recent years, been investigat-
ed both experimentally and theoretically. ' Our focus
in this Letter is on those features of the interface dynam-
ics that result directly from the presence of superfluidity
and thus far have escaped attention: A phase transition
can always be viewed as a mass current crossing an in-

terface; the persistency of mass currents is the defining

property of superfluidity. These two facts naturally lead
us to the expectation of new, especially dissipationless,
ways for superfluids to accomplish phase transitions.
They therefore cast doubt on the unrestricted validity of
the frequently employed equation" g =Kdp (where g is
the mass current, and hp the difference in chemical po-
tential, both across the interface; the Onsager coefficient
K is frequently referred to as the growth coefficient).
The important point here is that this equation implies
an entropy production, at the interface and of the rate

g /K. If we consider a torus filled in equal parts with
He-A and -B that are in equilibrium with each other

and separated by two interfaces, we must falsely con-
clude that a persistent current is not possible here, since
any mass current g would lead to an entropy production
with twice the above rate. Hence, despite its fairly gen-
eral validity at a normal-normal or normal-superfluid
interface (NNI or NSI), the Onsager relation g =Khtt
obviously fails at a superfluid-superfluid interface (SSI):
It does not contain enough structure to account for the
interface dynamics of a SSI.

In addition, but not coincidentally, there is also the
question about the onset of the hypercooled phase transi-
tion (HPT). This phase transition consists only of inter-
face motion, without any concurrent heat current, either
via a counterflow v, —v„or via diffusion. With the ap-
propriate values of the specific heat C, , the initial tem-
perature T;, the coexistence temperature TAq, and the
latent heat L, the usual onset condition' C,, (T; —T~tt)/
L =1 yields an exceptionally small value of 0.5'Vo under-
cooling, at which the 8-8 interface supposedly enters the
mode of HPT. Here, our objection is that this is only a
necessary but not a sufficient condition. In fact, we show
that HPT is the limiting behavior at large interface ve-

locity u » 10 cm/s, and is only continuously approached

with increasing supercooling: If T; is 10' below TAg,
u 10 cm/s and the correction term from heat current is

half the size of the term describing HPT; at 20% super-

cooling, u 30 cm/s and the correction term is around
4% of the HPT one.

Starting from conservation laws and the positivity of
the entropy production at the interface, we shall arrive at
general connecting conditions valid across any interface
between two superfluids. Despite their simplicity, they
lead to three qualitatively different stages of the super-
fluid interface dynamics: (i) At equilibrium, T=T&tt,
mass currents cross the interface with no dissipation.

(ii) At small supercooling values, up to around 2%, with

the resulting interface velocity u much below the
second-sound velocity c2, the superfluid has ample time
to equalize the discontinuity in the chemical potential,

4p 0. Correspondingly, the temperature T~ of the
growing B phase is lower than T~ of the A phase; see

Fig. 1. Decreasing the initial temperature T; of the A

phase accelerates i, and the equalization of the chemical
potential becomes increasingly incomplete. As a result,

Ttt is gradually overpassed by T&. (iii) In the limit of
strong supercooling, hp rushes past the helium so fast

FIG. 1. The two curves depict the chemical potential of the
A and 8 phases, respectively, as functions of the temperature.
Below TAq, pA & pa and the 8 phase is stable. At weak under-

cooling values, the phase transition takes place at constant
chemical potential; therefore T& & TA. If strongly under-

cooled, the transition takes place at (approximately) constant
entropy, i.e., at two points of the curves with the same deriva-
tive —Iitt/dT =cr. As a result, Ts & Tq
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that it hardly has time to accelerate the superfluid veloci-

ty (or rather the countercurrent, since the fluid can be
considered incompressible on the time scale of phase
transitions). Only now does the transition occur without
heat transfer and is what we have abbreviated as HPT.
At this stage, the SSI dynamics does not differ from that
of an interface involving at least one normal system
(NNI or NSI). Neglecting the interface entropy pro-
duction, and since no heat transfer takes place during
HPT, the entropy density of the two phases must be
equal, as(Tf) =~&(T;), Tf being the final temperature.
Expanding this equation around Tf = T~s (where consid-
erable counterflow completely invalidates the equation),
one can obtain the onset condition, mentioned and criti-
cized above. Instead, one should rather view this equa-
tion as an operating condition in the temperature range
where it is valid, yielding Tf for given T;, with T; ( Tf,
see Fig. l. Its more complete form, including the inter-
face dissipation, is one of two equations governing the
HPT. Both arise from our general connecting conditions
in the limit of high interface velocities.

This sketch of physics shall now be put into quantita-
tive terms. Without a magnetic field, there are five gen-
eral connecting conditions, formulated across the inter-
face. Three conservation laws: for mass, momentum,
and energy; one is the equation of motion for the phase
difference across the interface, a Josephson equation; and
the last is an Onsager relation, the appropriately general-
ized version of the usual g=Kdp. The conservation
laws for mass and momentum determine the two ampli-
tudes of first sound, leaving the interface in both direc-
tions. On the time scale relevant to phase transitions, we

can take the first-sound pulses to have reflected back and
forth and settled down to the equilibrium pressure. If, in

addition, we neglect the difference between the A and 8
phases in the equilibrium densities, Ap/p=10, no
(laboratory-frame) mass flow is being generated by the
phase transition. In other words, g= —pu in the rest
frame of the interface, and no more information can be
obtained from these two conservation laws. More
relevant to our problem is the conservation law for ener-

gy. It is obtained by equating the energy currents of
the two superfluids,

—(T)Af =(f)AT+ gAp+A(v„tl),

where f is the entropy current, II =v„g+ v,j, is the non-
linear part of the momentum current, and j, p, (v,—v„). AII quantities are given in the rest frame of the
interface; all vectors are perpendicular to the interface
and pointing into the 8 phase at the right if positive.
The symbols () and A denote average and difference
across the interface, respectively. For instance, &T) = —,

'

x(T~+Tg) and AT=Ts —T~. Dissipative terms and
broken symmetries, in spin and orbital spaces, are
neglected here and below. We shall comment upon them
at the end of the paper.

The next connecting condition is the Josephson equa-
tion, Ay+A(p+v„v, ) =0, taken in the interface frame
and obtained by subtracting across the interface. Since
the 2 and B phases are strongly coupled in the sense that
the stiffness constant p, of the interface region is hardly
softer than in the bulk, the gradients of the phase should
also be comparable. Now, the thickness d of the inter-
face is of the same order as the correlation length; hence
both Ap= (d V)p and Ap are vanishingly small quanti-
ties. Therefore, we can take the second connecting con-
dition as

A(p+ v„v, ) -0. (2)

with K denoting the growth coefficient and x the Kapitza
conductance. Since, for the weak and strong limits
of undercooling, we shall find R, =(f)AT and R,
= —gTAcr, respectively, this parametrization yields (f)
=xhT and g= —TKh, a, representing two limits of an
Onsager relation.

We first examine the weakly supercooled case, in

which the resulting interface velocity u and the counter-
flow velocity w = —j,/p are much smaller than the
second-sound velocity c2. In this case, we can linearize
Eqs. (1)-(3) (with respect to AT, Ap, and all the veloci-
ties) to yield

Af =0, Ap =0, (f) =xAT. (4)

In equilibrium, at Tz~, these equations are trivially
satisfied for f~ =fs =0, since AT =Ap =0. And there is

no constraint on the magnitude of the supercurrent
crossing the interface (as long as v, does not exceed its
critical value). Next, we consider the initial config-
uration of constant temperature, T~ =Tg =T;, and an
initial discontinuity in the chemical potential h p;

Equations (1) and (2) are the same connecting condi-
tions that one employs to describe second-sound shock
waves. [However, note the notational difference: The
chemical potential in Eq. (2) is the one in the interface
frame. In Ref. 7, p denotes the chemical potential in the
frame of vanishing v, .1 For the interface dynamics one
needs an additional connecting condition, a circumstance
caused by the following fact: In the former case, the
discontinuity in the temperature AT is an input, and one
calculates the shock front velocity and the counter-
current as its functions. Two connecting conditions are
therefore sufficient. In the interface dynamics, the
discontinuity in the temperature is also a variable to be
determined, and all three variables are functions of the
initial temperature of the supercooled liquid. The third
connecting condition is an Onsager relation. The surface
entropy production R,/(T) is the change in the entropy
current at the interface, or Af Obviousl. y, R, is given by
the three terms on the right-hand side of Eq. (1). We
may parametrize this positive-definite quantity as

(3)
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= (crp —cry)(Tgg —T;). Equations (4) represent a set
of three linear equations for the variables u, 6T~, and

bTg. The latter two are the respective amplitudes of the
second-sound step functions being sent out by the moving
interface in both directions. The amplitudes are such
that hp =0 is achieved at the price of a finite h, T. In the
wake of the two second-sound step functions, the inter-
face moves with the velocity

g = p—u =(x/(o)')hp;,

while the second-sound pulses have the amplitudes

(5)

1 pi rc 8T hcr

2 (cr) (c2) Ba (a)p
(6)

(T)ha=(cr)h—T+hp0, pu =K(T)hcr. (8)

The first equation comes from energy conservation and
yields Tf as a function of T;, and the second equation is
the Onsager relation and yields u, proportional to h, o.

=ay(Tf) crg(T;). One can now use Tf and u to cal-
culate the first-order quantity w. But it is Eqs. (8) that
merit attention, because they describe HPT, the phase
transition with no heat transfer. Studying the motion of
a NNI while assuming the absence of heat transfer, one
would arrive at exactly the same equations. The range
of validity, however, is quite different for these two sys-
tems. For a SSI, one can neglect the terms containing w

only when ha/(a))) w/u; compare Eqs. (8) to (7). Ex-

2668

Terms of higher order in ho/(a), hc2/(cz), etc. , have
been neglected. Despite the similarity in appearance be-
tween Eq. (5) and the formerly employed g =Khp, their
physical content is rather different. Especially striking is

the lack of a discontinuous hp at the interface.
Equations (4)-(6) are valid up to about 2% under-

cooling. At lower initial temperatures, nonlinear terms
such as u, uw, or uhp become successively more impor-
tant, leading to the alteration described in the introduc-
tion. In the limit of a strongly undercooled 8 phase, the
interface velocity u is by far the fastest, while w =wa is

small in comparison. (Just as in a shock wave, w~ =—0. )
Neglecting therefore terms of second and third order in

w, we obtain from Eqs. (1)—(3)
—(T)(her —crqw/u) =((o)—

—,
' aqw/u)hT+hp

hpo+uw(p„/p, ) =0,
u = (K(T)/p) (hcr ag w/u )—,

where p denotes the chemical potential of the helium in

which v, =v„=0. It is therefore only a function of the
temperature, hp =pp(Tf) pg (T; ).

To explore the physical content of Eqs. (7), we observe
that the Josephson equation lets w 0, if u ~ for a
given hp . So w/u «ho/oz can always be achieved by
an initial temperature that is low enough. Then we can
solve these equations iteratively, neglecting w in the first
and third of Eqs. (7) as the zeroth step,

trapolating from T4q, we estimate ho/(a) =2w/u for
T/T~q =0.9 and her/(a) = 25w/u for T/T~p =0.8. For
a NNI, on the other hand, w is identically zero, while the
diffusive heat current is too slow to ever become impor-
tant. Therefore, the HPT is an onset phenomenon for a
NNI. It occurs when it is possible, and the onset condi-
tion can be obtained from the first of Eqs. (8) (the ap-
proximate version of which was discussed in the intro-
duction).

Expanding Eqs. (8) around an initial temperature T,
that is low enough for a SSI, in terms of AT=Tf —T;,
we arrive at

hT( = —(ha+hP /&T&)r)TB/Bcr,

hT, = - -,
'

(&T& '+(a-', /aT')aV;/a ]hT,', (9)

pu/K = —hP (1+hT/2(T)) —
—, hT ja /8T,

where h, T=AT~+hT2. Deviating from our usual nota-
tion, all expressions here are to be taken at T„e.g. ,
hp =pp(T;) —pz(T;). The A-8 interface dynamics
should be well described by Eqs. (9) for T; &0.8T&q.
The heating hT of the 8 phase is small, yet becomes
more pronounced at low temperatures. We estimate
hT/T; =0.03 (0.06) at T; =0.8T~q (0.7T&a). Neglect-
ing hT, Eqs. (9) reduce to the equation of motion em-

ployed by Yip and Leggett.
Now we list our sins of omission. We are aware of

three serious ones, the neglect of which has considerably
simplified our task. We are working hard to understand
them and pledge amends in future publications. Our
omissions are the following: (1) the dynamics of the in-

terface at intermediate values of undercooling, u =c2,
(2) the inclusion of dissipation such as from lateral walls
or the damping of second sound; (3) the consideration of
the interface-induced spin dynamics. (In contrast, orbit-
al dynamics is probably too slow to be interesting. ) Be-
cause of dissipation, second sound decays exponentially.
This limits the range of heat transport, making it
relevant again to consider the entropy balance her=0
outside this range. Calculating the magnetization's
response to the moving interface, m =m(u), would en-
able us to make direct contact with experiments, espe-
cially the bizarre and most intriguing magnetic signals of
the more recent paper of Ref. 1.

Our theory provides a phenomenological framework
for the 2-8 interface dynamics. Aside from the growth
coefticient K and the Kapitza conductance K, the param-
eters in our formulas are thermodynamic in origin, some
of them known, others obtainable. Therefore, our pre-
dictions, such as the temperature of the growing phase
Tq or Tf, the interface velocity u, the countercurrent w,

or the amplitudes of the two second-sound pulses should
be readily accessible to experimental probes. The exist-
ing experimental data for u(T), while certainly con-
sistent with our theory, hardly present a convincing
verification, since K (or x) is itself a function of the tem-
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perature. We can of course determine K(T) from the
experimental u(T), and compare the values with previ-
ous theoretical results. Since EC was calculated while
taking v„=v, =0, the comparison should probably ex-
clude experimental data above 0.8T~q, with unfortunate-
ly only two remaining data points. A rough estimate,
neglecting the heating of the 8 phase, shows that the
warmer point agrees to within an accuracy of 15%, and
the colder one to about 40%.
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