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Phonons as Collective Modes: The Case of a Two-Dimensional Wigner Crystal
in a Strong Magnetic Field
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We present a fully quantum-mechanical theory for the phonon modes of a two-dimensional Wigner
crystal in the strong-magnetic-field limit. Our theory is based on a time-dependent Hartree-Fock ap-
proximation for the density-density response function g which is exact in the harmonic limit but allows
for arbitrarily large anharmonicity. Our calculation is facilitated by identities, valid in the strong-
magnetic-field limit, which allow g to be expressed solely in terms of the ground-state electron density.

PACS numbers: 67.80.Cx, 71.45.Lr, 73.20.Mf

The usual description of phonon modes in a crystal is
based on a harmonic approximation which assumes that
displacements from lattice sites are small. For crystals
formed from light particles this approximation can be
poor even at zero temperature because of quantum-
mechanical zero-point motion. A number of different
techniques, ' most based in different ways on the exact
solution to the harmonic approximation, have been
developed which can deal successfully with the anhar-
monicities of quantum solids. Nevertheless, it is clear
that for extremely quantum solids a formulation in
which expansions in displacements from lattice sites do
not appear at all is desirable. It has long been recog-
nized that one such fortnulation is provided by a theory
which treats the density fluctuations of a quantum sol-
id in a time-dependent Hartree-Fock approximation
(TDHFA). In this theory, the phonon modes appear as
poles in the density-density response function and it is
possible to show that the familiar facts of harmonic lat-
tice dynamics are recovered in the appropriate limit.
The phonon modes are seen as collective excitations en-
tirely analogous to the plasmon or zero-sound modes
which occur when the ground state is a fluid and whose
excitation energies are usually determined in the same
way. The utility of this approach to the study of lattice
dynamics in quantum solids has been limited by practical
difficulties associated with the broken translational sym-
metry of the crystalline ground state. In this Letter we
present its first successful application.

Because of the quantization of kinetic energy in units
of hta, =heB/m c, electrons in two dimensions are ex-
pected to form a Wigner crystal in a strong magnetic
field. The Wigner-crystal states are in competition with
the incompressible fluid states responsible for the frac-
tional quantum Hall effect which are especially stable
when the filling factor of the lowest Landau level
(v= 2ttl n= n@o/B=n—hc/eB) —is a fraction with an odd

denominator. (We use l as our unit of length. ) Recent
experimental evidence suggests that the crystal state be-
comes stable for v& —,

' except for v near I/m for ttt =5,7
and possibly larger odd integers. Anomalies seen in
sound propagation, which are not yet fully understood,
might indicate that the ground state is also crystalline
for v near

In the strong-field limit of the harmonic approxima-
tion to the crystal lattice dynamics the phonon frequen-
cies are given by
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where D is the dynamical matrix in the absence of a
magnetic field, a=coo D is a dimensionless quantity,
too Se /mao, and ao is the triangular crystal lattice
constant. Since coo/co, =(e /hl)(vv 3/tr) ' is indepen-
dent of the electron mass, we see that the lower phonon
frequency corresponds to an excitation of the Wigner
crystal in which the quantized kinetic energy is not
changed while the upper phonon frequency corresponds
to an excitation in which an electron is promoted to a
higher Landau level. We show below that this quantiza-
tion of kinetic energy and the absence of Landau-level
mixing in the strong-field limit of the Wigner crystal al-
lows the density-density response function to be evalu-
ated in a remarkably simple way.

In the strong-field limit of the Hartree-Fock approxi-
mation (HFA) for the crystalline ground state, the
single-particle HF Hamiltonian is given by 0
=PGIV(G)p(G), where p(k) is the density operator
projected onto the lowest Landau level. Each electron
sees an identical periodic potential W with Fourier trans-
form

2 2 2

IV(G) — (1 P ) G /2 d2 ' v y vy —
q /2 (G)

—=—[V (G) I(G) ]pHF(G) =1 U(G)p, F(G)
(3)
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where V„(G)=2)re /(G~ is the 2D Coulomb interaction, pHF(~G~) is the Fourier transform of the ground-state density,
A is the system area, and —I(G) is the exchange contribution to the effective electron-electron interaction. (The G s

are reciprocal-lattice vectors of the crystal. ) The fact that the exchange contribution to W(G) is proportional to
pHF(G) is a consequence of the analyticity of the single-particle wave functions in the lowest Landau level which allows
the one-particle density matrix to be expressed in terms of its diagonal elements. ' The static HFA cannot account for
the correlations between the motions of electrons on different lattice sites which are responsible for the low excitation
energies of long-wavelength phonons, and in the harmonic limit (v«1) reduces to an optimal Einstein oscillator ap-
proximation in which the zero-point energy of the lattice is overestimated by about 15%. The TDHFA describes the
correlated density fluctuations around the HFA mean-field approximation.

In the strong-field limit the TDHFA density-density response function is given by

g(r(, r2, co„)=g (r), r2, co„)+I) '„dr)„dr4g (r(, ri, co, )U(r) —r4)g(r), r4, co„), (4)

where g (r(, r2, co„)is the density-density response functions for noninteracting electrons in the HFA effective periodic
potential and U(r), the Fourier transform of U(q), describes the Coulombic and exchange fields seen by the responding
electrons. Diagrammatically, Eq. (4) corresponds to the usual summation of bubble and ladder diagrams for g. This
simple form results from the analyticity of the Landau-level wave functions which allows' ' the interaction lines in

ladder diagrams to be converted to interaction lines between bubbles (g ) with V, (q) replaced by I(q).
In general, the evaluation of

g (r), rp, co„)= QG(r(, r2, co„+cop)G(rq,r),co~)
1

ph

requires a knowledge of the eigenvalues and eigenvectors of the one-particle HF Hamiltonian. This process is very
cumbersome and time consuming, especially in light of the intricate electronic structure of electrons in a periodic poten-
tial and a constant magnetic field. ' We have found, however, that in the strong-magnetic-field limit it is possible to ex-
press g in terms of the ground-state density alone. This property follows from using the commutation relation for the
density operator projected onto the lowest Landau level, '

k].k2
[p(k) ),p(k2) ] =2i exp sin

2

(k(xk2) z

2
p k(+k2 (6)

in the equation of motion for g . Using the periodicity of the crystalline state it is sufficient to consider

fO

gI~ G (k;co„) dr dr'e ' "+ 'g (r, r';co„)e'"+

eijh
dre '"" [—(Tp(k+G, r)p( —k —G', 0))],

where

(7)

t ap(k, .) [H HF p(k, &)] =g W(G) [p(G, r ),p(k, r) ],
G

and k is in the crystalline Brillouin zone. Differentiating the quantity in curly brackets in Eq. (7) with respect to r us-

ing Eqs. (8) and (6) gives, after analytically continuing to real frequencies,

g [(co+ib)bG G ~ —AG G-(k)]g(-, G (k;co) = —BQ,Q'(k),
Gtl

where

(9)

(k) 2. ((,+G). (),+G )g . [(k+G) x (k+G')]. z
2

(lo)

and

(),+G). (o G)g . [(k+G) x(k+G')]. z pHF(G
AG, G k =2ie "+ '

sin
2 6

Comparing Eqs. (4) and (9) it follows that, in an obvious matrix notation,

[(co+l8)I —A (k) +B(k)U(k) ]g(k;co ) = —B(k), (l2)
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FIG. 1. (a) Im(pit, o) as a function of cu for filling factor
v 4 and at a given k showing the transitions between the one

occupied and the three unoccupied subbands of the first Lan-
dau level. (b) Im(go, o) at filling factor v--,' for k's at the

points labeled 1-3 in the inset. [A solid line is used for point 1,
a dashed line for point 2, and a dash-dotted line for point 3.
The inset also shows the G used in (a) and (b).] The strong
peaks at low frequencies reflect the magnetophonon excita-
tions. The intersubband excitations of (a) have disappeared in

Im(Z), being replaced by new anharmonic effects (see text).

band. ) We have compared g 's evaluated from Eq. (9)
with those obtained from brute force evaluation of Eq.
(5) and find excellent agreement. It is remarkable that
the detailed spectral features in g are captured without
reference to the single-particle density of states. Im(g)
is plotted in Fig. 1(b). The lowest-energy peak in Im(g)
is strongly k dependent and it traces out the dispersion
relation of the magnetophonon branch which is associat-
ed with intra-Landau-level excitations. Anharmonic
effects described by the TDHFA are clearly reflected in

the remaining structure of Im(g) and also in the finite
width (i.e., finite lifetime) of the magnetophonon excita-
tions. The positions of the multiphonon peaks seen in

Fig. 1(b) are more weakly k dependent, indicating that
these excitations are quite localized. We see that includ-

ing correlations qualitatively alters the density fluctua-
tions. In particular, Im(g) has essentially no structure at
frequencies higher than those of Fig. 1(b); i.e., no trace
remains in the TDHFA of the transitions between
Landau-level subbands which occur in the independent-
electron approximation.

The dispersion relation of the magnetophonon modes
obtained from the peaks of Im(g) is plotted in Fig. 2 for
different filling factors and compared with that obtained
in the harmonic approximation and in a partially'6 self-
consistent harmonic approximation in which the elec-
trons are given a form factor (2zl ) 'exp( —~r

—R;~ /
2l ) corresponding to the quantized cyclotron orbits of
the lowest Landau level. At small filling factors the
form-factor approximation accounts reasonably well for
the anharmonic corrections to the magnetophonon dis-

persion but at larger filling factors the corrections are
substantially overestimated. We find that the TDHFA

I I I I I 1 I l I l I I

0.10—

where UG, G(k) =BG,GU(k+G).
Using Eqs. (9) and (12), go(k;ro) and g(k;co) can be

evaluated simply by inverting a matrix once pHF(G) is

known. ' Since pHF(G) decreases rapidly with ~G~, an

accurate approximation to g (k;co) and g(k;ro) can be
obtained when the infinite matrices are truncated to a
relatively small number of shells of reciprocal-lattice
vectors. 1m[go(k;co)] is plotted in Fig. 1(a) at a given
wave vector k (g has a very weak k dependence) and for
v= 4. It shows peaks associated with transitions be-
tween the one occupied and the three unoccupied Hof-
stader subbands' of the Landau level which occur at
this filling factor. (The gap between the third and fourth
subbands is smaller than the width of the lowest sub-
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FIG. 2. Dispersion relation of the magnetophonon along the
edges of the irreducible Brillouin zone (see inset) for filling
factors (I) v= —,', (2) v= —,', (3) v= —,', and for the TDHFA
(solid line), the harmonic approximation (dash-dotted line),
and the form-factor approximation (dashed line). At a given
filling factor, the TDHFA result lies between the other results.
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dispersion relation can be phenomenologically approxi-
mated by setting l al in the form factor, where
a =a(v) decreases with v and approaches I at small fill-

ing factors.
In summary, although the dispersion relation of the

magnetophonons obtained in the TDHFA is remarkably
similar to that obtained by other methods, the TDHFA
results do contain qualitatively new features due to
anharmonicity. %e have used the equation-of-motion
method described in this Letter to study the dispersion
relation of the magnetoplasmon modes which occur at
energies near loco, by allowing for transitions between
the n=0 and n=l Landau levels. Generalization to
transitions from n =0 to n ) I identify excitation modes
with no classical analog. ' In addition, we are presently
studying the effect of pinning on the Wigner-crystal
ground state and on its excitations. In closing, we re-
mark that the equation-of-motion method presented here
suggests a new approach to the study of localization in

the strong-field limit.
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