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Microscopic Calculation of Collective Excitations in He Clusters
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We compute the ground-state structure and collective-excitation energies of He droplets at zero tem-
perature. The collective excitations are described by a generalized Feynman theory with inputs of exact
one- and two-body densities sampled from a second-order diA'usion Monte Carlo algorithm. The mono-

pole transition density shows a pronounced shell structure not accountable by simple Jastrow-type varia-
tional trial functions.
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the basis of the exact ground state (in contrast to Refs. 6
and 8), and (3) determining the optimal excitation func-
tions and excitation energies simultaneously by directly
solving the generalized Feynman eigenvalue equation,
Eq. (7) below. This last distinction is especially impor-
tant in that we do not need to redo Monte Carlo integra
tions to optimize parameters or orthogonalize functions.
The entire excitation spectrum is obtained and wave
functions are automatically orthogonal. Our approach is
limited only by (a) the statistical and extrapolation er-
rors in sampling the exact one- and two-body ground-
state densities and (b) the adequacy of the Feynman an-

satz, Eq. (1) below.
We require a translationally invariant solution of the

N-particle Schrodinger equation, %'o(r ~, . . . , r~ )
9'o(r~+r, . . . , rN+r), for example, as evolved by the

Monte Carlo methods described in Ref. 3. Following
Feynman, we write a trial function of the excited state
as

F(r~, . . . , rtv) = g [f(r; —r, ) —(f;)],

(2)

(3)

The study of quantum liquid drops is presently an area
of active experimental and theoretical research. While
one has a reasonably good description of the ground
state' of clusters of He, its spectrum of excited states
is uncertain. On the other hand, the excitation spectrum
of quantum liquid clusters is experimentally more easily
accessible than both the ground-state structure and its
energetics. An unambiguous determination of finite-
size eA'ects in the energy of collective excitations would
also help to answer questions relating to the onset of
superfluidity as well as resolving the long-standing prob-
lem of the relationship between the energy of nuclear gi-
ant resonances and the compressibility of nuclear
matter.

Recently, estimates of helium-droplet excitation ener-
gies have been computed on the basis of a quantized
liquid drop, 6 a nonlocal-density-functional theory, and
Monte Carlo integrations of analytic, parametrized exci-
tation operators. ' Both Refs. 6 and 8 estimate excita-
tion energies on the basis of a variational ground state. %F(rt, . . . , rtv) =F(r~, . . . , rtv)%'o(r~, . . . , rtv), (1)
By explicitly orthogonalizing these excited states, the au- where
thors of Ref. 6 were also able to obtain some higher exci-
tation energies. In Ref. 7, a nonlocal density functional

i 1

is fitted to reproduce the bulk energetics and surface ten-
sion of liquid 3He. (f ) =&adolf(r rc. . ) I+o)

Our approach is distinguished from all previous work and r, is the center-of-mass coordinate.
by (1) making no assumptions on the density profile (as Since eo(rt, . . . , rjv) is the exact, translationally in-
in Ref. 6) or the energy functional of the clusters (as in variant ground-state wave function, the energy difference
Refs. 6 and 7), (2) computing the excitation energies on between the ground state and the trial excited state can

be expressed as

I (@ l[oF, [T,F]]l+ ) og2 (1 —1/N)fd rp~(r)lVf(r)l —(1/N)fd'rd r'p2(r, r')Vf(r) Vf(r')
EF —Ep=—

( PolF l%'o) 2m fd r pt(r) lf(r) l
+fd rd r'f(r) [p2(r, r') —

p~ (r)p~ (r')]f(r')
where EF =&@FlHl+F)/(+F l+F) is the energy corresponding to the wave function (1), and Eo is the exact ground-state
energy. The coordinates in the second part of Eq. (2) are measured from the center of mass, and the one- and two-body
densities are defined by

p~(r) = d rt d rtvgb(r; —r, —r)+o, p2(r, r') =„d r~ . d re+8(r; —r, —r)8(r, —r, —r')+o.
l+J

The energy difference hco =EF —Eo determine—d by Eq. (2) is an upper bound to the exact excitation energy.
It is convenient to define u(r) = jp~ (r)f(r) so that Eq. (2) can be written symmetrically as

fd rd r'u(r)H~(r, r')u(r')
AN= (4)fd rd r'u(r)S(r, r')u(r')
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with the coordinate-space representation of the static structure function

p2(r, r') —p t (r)pl (r')

[p (r)p (r') ] '"
and the nonlocal kinetic-energy operator

V, V,'p2(r, r')

p)
' ' [p&(r)1't' 2ttt1V [pl(r)pl(r')] '" '

(5)

(6)

The lowest upper bound for the excitation energy is ob-
tained by minimizing the energy difference hco with

respect to the excitation function u(r). This leads to the
desired generalization of the Feynman dispersion rela-
tion

H 1 u (r) = h to d r'S(r, r') u (r') . (7)

In contrast to the case of bulk liquid helium, the lack of
experimental information on the pair distributions for
quantum liquid drops precludes one from using Eq. (7)
to predict the spectra of collective excitations from mea-
surements of the structure function. However, since the
pair-distribution function can be obtained accurately by

an exact solution of the Schrodinger equation, it is a sim-

ple matter of solving the eigenvalue problem (7) to ob-
tain the excited states.

The eigenvalue problem (7) can be decoupled and
solved by expanding the excitation function and the
pair-distribution function in partial waves,

u(r) =gu((r)P((r" i),
l

P2(r, r') —P1(r)P1(r') g 21+ I

[p1 (r)p1(r') j '" t 4tr

Having calculated the excitation function, we obtain
finally the transition density,

=pl (r)f(r) +„d r'[pz(r, r') —p1(r)pl (r') ]f(r') . (IO)

It is worth noting here that both the left- and the
right-hand side of Eq. (7) have two exact zero-energy

eigenfunctions uo(r) =+pl(r) and u 1(r) =c rgpl(r),
where c is an arbitrary constant vector. Both of these
states are spurious: The first, which is a monopole state
corresponding to a constant correlation operator, van-
ishes identically when the ground-state expectation value
is subtracted. The second, a dipole state corresponding
to a correlation function f(r) =c r, again vanishes iden-
tically, since in this case F(ri, . . . , rtv) =P;-&f(r;
—r, )=0.

Since one is mainly interested in excitations with 1ow-

angular momentum (i.e., monopole and quadrupole exci-
tations), it is only necessary to compute partial-wave am-
plitudes ht(r, r') of the pair-distribution function for
small values of 1. The center-of-mass correction term

I

(last term) in Eq. (6) couples neighboring even and odd
multipoles of the two-body density (9). We found, how-

ever, that apart from guaranteeing one exact zero-energy
eigenvalue in the dipole channel, its effect is very small
and can be safely ignored.

Employing the Aziz' potential, we evolve the product
state 0o@o of a 1V-atom helium cluster by a second-order
diffusion Monte Carlo (DMC) algorithm DMC2b as
developed by one of us in Ref. 3. The variational trial
function @o used is of the McMillian form,

@o=Qexp[ ——'(a/r; ) jQexpj —
—,
' b (r; —r, )zJ,

(II)
which is manifestly translationally invariant. The
ground-state properties thus obtained for helium clusters

TABLE I. so Eo/N is the ground-state energy per particle in units of K, ro =( —, ) 't'(r'l't'N 't' is the unit radius defined from

r. in units of A, the hto are the collective-excitation energies in units of K (numbers inside brackets are the corresponding VMC
results), and At* is the reduced time-step size in units of A 't such that (Ar2) =At . VMC results are obtained by using trial func-

tion (11);GFMC results are taken from Ref. l. All DMC results are obtained by using algorithm DMczb of Ref. 3, except for the
case 3.9, which uses algorithm DMc2a as a check.

40

70

112

0.002
0.002
0.001
0.001
0.0005
0.0005
0.0005

3.6
3.5
3.9

3.8
4.3
4.2

—2. 196(1)
—2.194(1)
—2.744(1)

—2.736(2)
—3.143(2)
—3.134(1)

gMC

-2.525(3)
—2.529 (3)
—3.188(2)
—3.176(3)
—3.170(2)
—3.702(3)
—3.705(3)

GFMC

-2.487(3)

—3.12(4)

—3.60(1)

VMCI'p

2.630(1)
2.595 (1)
2.536(1)

2.505 (1)
2.491 (1)
2.465 (1)

2.551(2)
2.532(2)
2.441(2)
2.475 (3)
2.461(3)
2.399(2)
2.391(2)

p GFMC
Pp

2.57

2.47

2.44

3.60[3.44]
3.53 [3.58]
3.94[3.38]
3.91
3.96 [3.53]
3.92[2.97]
4.27 [3.16]

1.37[1.77]
1.50[1.84]
1.50[1.521
1.44
1.54 [1.60]
1.76[1.27]
1.62 [1.34]

ht0(1=0) ht0(l=2)
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of size N =40, 70, and 112 are tabulated in Table I and

compared with the Green's-function Monte Carlo
(GFMC) result of Ref. 1. For the present calculation,
much better statistics is required than for the calculation
of the ground-state energy, since one not only needs to
bin the one-body density, but also the two-dimensional
partial-wave amplitudes hl(r, r'). Typically, after equili-
brating 2000 four-hit Metropolis sweeps, (2-5) x 10
configurations are sampled for the variational calcula-
tion. For the DMC calculation, a target population of
200 configurations is maintained. After equilibrating for
2000 time steps, the evolution is continued for
40000-60000 time steps. The statistical errors for the
ground-state energy given in Table I are from block
averages of 50 time steps.

We have checked that the trial and the normalization
(growth) estimate of the ground-state energy are in-

dependent of the trial function used and agree with each
other to three significant digits. We have also checked
the time-step convergence error by doubling the time-
step size and by running an entirely different second-
order algorithm, algorithm DMC2a of Ref. 3. Systematic
changes on the order of 1% are observed. Although
these are sometimes larger than the quoted statistical er-
rors, they are not significant for our purpose. More seri-
ous is the extrapolation error incurred by using the per-
turbative estimate
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for computing the ground-state expectation value of
operators other than the Hamiltonian. To gauge this er-
ror, we check that consistent values for &r ) are obtained
for each cluster size according to Eq. (12) from indepen-
dent runs with slightly diH'erent values of b. The param-
eter a is fixed at a =3.0. Table I shows that the unit ra-
dius ro=( —, ) 'i &r )'i N 'i thus obtained is indepen-
dent of b to within 1% or less. Our cluster radii and en-
ergies are both systematically below previous GFMC re-
sults.

Figures 1(a)-1(c) give the one-body densities as ob-
tained by applying Eq. (12) bin by bin to 60 bins. The
bin sizes used were 0.3 A for N =40, 70, and 0.32 A for
N=112. For short runs, we observed large oscillations
in the density similar to those noted in Ref. 1. In our
production runs, which iterate an order of magnitude
more generations than those of Ref. 1, these fluctuations
have largely disappeared. However, small oscillations
persist and the density in the first few bins remains
affected by relatively large statistical errors. The
partial-wave amplitudes hi(r, r') for I =0, 1, and 2 are
obtained by a 30x59=1770 binning of the two-body
density with the same bin size as in the one-body-density
case. The statistical fluctuations at r =r'=0 remain
large; fortunately, they carry little weight in determining
the excited-state energies.

The inputs to Eq. (10) are the one- and two-body den-
sities that were calculated as described above. In solving
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FIG. l. (a) The one-body density (crosses) and transition
densities for the monopole (solid circles) and the quadrupole
(open circles) collective mode of a N=40 helium cluster. The
dotted line is the monopole transition density as calculated
from the variational wave function (11). (b) Same as (a) for a
N =70 helium cluster. (c) Same as (a) for a N=112 helium
cluster.

for the excited states, a modest smoothing of the one-
body density around the origin was necessary for the cal-
culation of the second derivative appearing in the
kinetic-energy operator Hi of Eq. (7). In the outer sur-
face, ~here the density falls below 2% of the central den-

sity, and statistics is very poor, we extrapolated the den-
sity by its asymptotic form pl(r)-exp[ —2(2mp/
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ft ) 't rl/r . The localized excitations are discrete solu-
tions of Eq. (7) corresponding to bound states; i.e., those
with energies Am satisfy Am+ p & 0. Since our ground-
state energies are in general agreement with those of
Ref. 1, we consider it adequate to use their fitted mass
formula to compute the chemical potential p= dE—/dN
= —7.02+ 12.53x —3.73x, where x =N ' . For
N=40, 70, and 112, the chemical potential is, respec-
tively, p = —3.67, —4.12, and —4.58 K.

Our results for the monopole and quadrupole excita-
tion energies for droplet sizes N=40, 70, and 112 are
also given in Table I. The variational Monte Carlo
(VMC) results are obtained by solving the eigenvalue
equation (7) with inputs of one- and two-body densities
sampled from the trial function (11). Despite very
difl'erent ground-state variational functions and a com-
pletely different method of optimizing the excitation
function, our VMC quadrupole energies are surprisingly
close to those obtained in Ref. 8. (For N =40, 70, and
112, their monopole and quadrupole energies are
2.79,2.75,2.63 and 1.72, 1.46, 1.28 K, respectively. ) Both
our VMC and DMC excitation energies are significantly
different from the liquid-drop-model (LDM) prediction
of hto(l=0) =25.6N ' ' K (=7.49, 6.21, and 5.31 K)
and hco(I=2) =10.4N 't K (=1.64, 1.24, and 0.98
K). Our DMC results do not even begin to share the
same trend as LDM predictions. We conclude therefore
that, for the cluster sizes considered, the detail dynamics
of helium clusters is far from the liquid-drop limit. By
comparing results from independent ground-state runs
with different variational parameters, we estimate that
our excitation energies have systematic extrapolation er-
rors on the order of 10%.

Figures 1(a)-1(c) also show the transition densities
6p~(r) [cf. Eq. (10)] for the monopole and the quadru-
pole excitations for N =40, 70, 112. In all three cases,
the quadrupole excitation has the expected form of a sur-
face mode. Our results for the monopole excitation are
of particular interest: While the ground-state density is
reasonably smooth, the monopole transition density
shows remarkable oscillations for N=70 and 112. (In
the N=40 case, the monopole excitation energy is very
close to the continuum and we were unable to distinguish
systematic oscillation from numerical fluctuations. ) We
believe that these oscillations are significant since they
are a stable feature of all our larger-cluster calculations
and have an average wavelength (3.4 A for N=70 and
2.8 A for N =112) of approximately the average particle
separation. We found such oscillations in our calcula-
tions independent of the time-step size and the choice of
the algorithm. Moreover, they are visible even in the

directly sampled partial-wave amplitude ht(r, r'). The
oscillations of the transition density are evidently con-
nected with the geometric, hard-sphere-like, shell struc-
ture of the droplets. Figures 1(a)-1(c) also show the
monopole transition density obtained from the variation-
al Monte Carlo calculation with a simple McMillan-type
Jastrow wave function (11). None of the shell structure
is observed in this case.

We have presented and applied in this paper a gen-
eralized Feynman theory for computing collective excita-
tions of a finite system from knowledge of the ground-
state one- and two-body densities. Our approach de-
pends on the availability of a high-statistics ground-state
density distribution made possible by present-day super-
computers. In computing for the excited states, we have
also found a somewhat unexpected shell structure of the
transition density for the monopole resonance which is
evidently related to the hard-core-like interaction of He
atoms.
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