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We examine the propagation of electromagnetic waves in periodic dielectric structures by solving the
vector Maxwell equations with the plane-wave method. Contrary to experimental reports as well as re-
sults of scalar-wave calculations, we do not find a true gap extending throughout the Brillouin zone in
the fcc structure. However, there is a depletion in the photon density of states, seemingly a remnant of
the Mie resonance, giving rise to a pseudogap in the spectrum which is quite strong for dielectric-sphere
packing fraction f~0.3-0.4. An effect analogous to the Borrmann effect in x-ray diffraction is predict-
ed where certain photon modes will propagate an anomalously long distance before getting absorbed.

PACS numbers: 41.10.Hv, 71.25.Cx, 84.90.+a

The propagation of electromagnetic (EM) waves in a
medium with a collection of scatterers is an old prob-
lem'*? having to do with such diverse subjects such as x-
ray diffraction in crystals, the blue color of the sky, the
theory of rainbows, light scattering from interstellar
dusts, rainfall measurement using radar, etc. In the last
four examples the scatterers are randomly distributed in
the medium. Recently, there has been growing interest
in EM wave propagation in man-made structures with a
periodic array of scatterers of macroscopic dimensions.
New stimulus for this has been provided by the experi-
ments of Yablonovitch and Gmitter,> where the ex-
istence of photon bands in the fcc crystal of dielectric
spheres has been demonstrated and the possibility of the
existence of a band gap in the “photonic band structure”
has been raised.

In the frequency range of the photonic gap the EM
wave would not propagate through the medium but rath-
er would decay exponentially. Such a structure could ex-
hibit potentially new physical phenomena such as inhibi-
tion of electron-hole radiative recombination if the corre-
sponding photon frequency falls in the gap region.* For
an atom or molecule left in such a medium, John and
Wang have recently suggested that the single-photon
spontaneous emission is inhibited and a qualitatively new
quantum electrodynamic bound state of the photon in
the vicinity of the atom is formed.® Kurizki and
Genack® have earlier shown that the dipole-dipole in-
teraction between two atoms is also suppressed in such a
situation. Another interesting phenomenon is the possi-
bility of Anderson localization for the EM waves.”~'°

So far, the photon bands in periodic structures have
been examined theoretically only in the scalar-wave ap-
proximation where the vector nature of the EM field is
neglected. This has been studied by several authors us-
ing the plane-wave (PW),'"!2 the Korringa-Kohn-
Rostoker (KKR),'* or the augmented-plane-wave'*
(APW) method with the general result that for the face-
centered-cubic structure a gap appears in the entire Bril-
louin zone (BZ) if the dielectric-constant ratio between
the spheres and the background exceeds a critical value
of ~3 or so. However, the vector nature of the EM

waves as shown here has important consequences.

Scattering of vector EM waves from a single sphere
has been studied in great detail since the pioneering work
of Mie.'> We consider here the wave equation for the
electric displacement vector D in a periodic structure
with a space-dependent real dielectric constant £(r) and
with the magnetic permeability u being uniform
throughout. The dielectric constant £(r) is periodic with
the value g, inside the spheres and ¢, in the background.
The corresponding refractive indices are denoted by n,
and n,, respectively. From Maxwell’s equations, we have
the wave equation for D:

—VD=(0/c)D+VxVx[V(r)D], (1)
where the “potential” V(r) is given by
V(r)=1—1/e(r) )

and ¢ is the vacuum speed of light. It is sufficient to
solve Eq. (1) for the displacement field D, since once it is
known, the other EM field vectors, viz., E, H, and B, are
uniquely determined. For a periodic dielectric structure
V(r) can be expanded in terms of its Fourier components
V(G), G being a reciprocal-lattice vector. The electric
displacement D which satisfies Bloch’s theorem can be
expanded in terms of the plane waves:

D=ZdGei(k+G)-r’ 3)
G

where k is the Bloch momentum. The zero divergence
condition for D, V- D =0, applied to Eq. (3), implies that
each component in the plane-wave expansion is orthogo-
nal to the wave vector of the corresponding plane wave:
dg- k+G)=0. 4)

Substituting Eq. (3) into Eq. (1) one obtains the equa-
tion for the expansion coefficients dg:
Hgdg+§ V(G—-G){(k+G) dg(k+G)
—|k+GPdg} =0, (5)
where
Ho=|k+Gf —w?/c?. (6)

In fact, this equation is familiar from the dynamical

theory of x-ray diffraction'-'® in crystals, where it is used
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to describe the Bragg scattering of x rays using two
plane waves. Here we solve for the electric displacement
field D using many plane waves in the expansion (3) to
study the eigenmodes of the EM waves in the periodic
dielectric structure. Expressing dg in terms of its Carte-
sian components, it follows from Eq. (5) that the follow-
ing determinant must vanish:
detlHgbg,66: ;+V(G' —G){(k+G");(k+G');
—|k+G'Ps; 1=0, (7
where i =x, y, or z. If we retain N plane waves in the
expansion (3), then Eq. (7) is a 3N X 3N determinant the
solution of which provides us with 3N eigenmodes.
However, since EM waves are transverse waves with two
distinct helicity modes for each plane wave, we should
have in total only 2/V modes. This apparent discrepancy
in the number of eigenmodes is explained by taking the
dot product of Eq. (5) with the vector k+G and observ-
ing that the orthogonality condition, Eq. (4), is satisfied
only for those solutions @ for which Hg=|k+GJ
—w?/c?#0. Thus the orthogonality condition must be
explicitly checked in the solution of Eq. (7) to discard
the N unphysical solutions, one per plane wave in the ex-
pansion. The remaining 2N solutions are the true eigen-
solutions.

Our numerical calculations were performed for the fcc
lattice with the dielectric constants varied between ~1
and 36 and for a number of sphere packing fractions
B=Qgphere/ Ucen.  The value of f=0.74 corresponds to
close packing of spheres beyond which they overlap.
Qe is the unit-cell volume and Qphere = (47/3) R when
the spheres of radius R, are not overlapping. We exam-
ined the cases of both “air atoms” (g, =1 with ¢, varied)
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FIG. 1. Typical photon bands in the fcc structure. In the
long-wavelength limit the dispersion is linear and the frequen-
cies of the two helicity modes are nearly degenerate. There is
no true photonic gap extending throughout the BZ. The basic
features of the bands may be understood as perturbation of the
free photon bands folded into the fcc BZ (Ref. 11).

and dielectric spheres (g, =1 with g, varied). We re-
tained typically ~300 plane waves in the expansion
which results in an accuracy better than < 3% or so in
the lower-lying eigenmodes.

A typical photon band structure for the vector waves is
shown in Fig. 1. The parameters correspond to the case
where a true gap was reported experimentally.® In strik-
ing contrast with the experiment, we do not find a true
gap existing throughout the BZ. However, the calculat-
ed effective refractive index n.g shown in Fig. 2 agrees
reasonably well with the measured value. This was cal-
culated from the average value of the frequencies of the
first four modes at the X point to directly compare with
the experimentally reported values. As in the experi-
ment? we found n.s calculated this way to be extremely
close to that calculated using the long-wavelength limit,
viz.,

The calculated width of the forbidden gap at the X and L
points (Fig. 3) does not agree very well with the experi-
mental data, indicating a necessity for repeating the ex-
periments with improved accuracy. The calculated
widths tend to zero in the limit §— 0 or 1 as they should
since these limits correspond to a uniform medium
without scatterers.

For the entire range of ¢, and & we did not find a true
gap of significant magnitude in the fcc structure. This is
in marked contrast to the scalar-wave result where for
ratios of the two dielectric constants exceeding a critical
value of ~3 a true gap was found.''~!*

Even though a gap is absent throughout the BZ, in
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FIG. 2. The effective refractive index neg for the two dielec-
tric structures: ‘“‘air atoms” with n, =1.0, n, =3.5 (solid line),
and dielectric spheres with n, =3.06, n, =1.01 (dashed line).
Data points are experimental values from Ref. 3.
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FIG. 3. Calculated width of the forbidden gap at the X and
L points normalized to the center frequency at X as a function
of sphere packing fraction 8. Data points are from Ref. 3.

certain situations there is a strong pseudogap present in
the density of states for the photon modes. The density
of states p(w) is defined such that p(w)dw is the number
of photon modes including both helicities between the
frequency w and w+dw. It may be calculated by in-
tegrating over the irreducible BZ in a standard man-
ner.!” The density of states was calculated using the
tetrahedron intgegration scheme'® with 120 k points in
the irreducible BZ and ~ 100 plane waves.

First, we note that for a homogeneous medium, the
linear dispersion relation is linear, w =ck, gives rise to an
o? dependence of the density of states (DOS):

p(@) =2r@?, 8)

where the dimensionless quantity @ is defined as @
=(2n/a) ~'w/¢, where C is the speed of light, =c/n..
Since the linear dispersion relation is followed in the
long-wavelength limit, for sufficiently small values of o
the density of states has a similar w? dependence.

Figure 4 shows the gradual evolution of a pseudogap
in the DOS as the strength of the scatterers is varied by
changing the sphere packing fraction 8. Even though
there is no true gap extending throughout the BZ we find
that the depletion of the DOS can be very large. Unlike
the corresponding scalar case where the magnitude of
the gap is optimized for a packing fraction 8 of ~10%-
15%, we find in the vector case that the magnitude of the
pseudogap is optimized generally for f~30%-40%. A
true gap in the entire BZ, although absent for the fcc
structure, could conceivably exist in other periodic struc-
tures.

The photon bands are the result of interplay between
the coherent scattering due to the periodic structure and
the scattering due to the individual spheres, the latter ex-
hibiting characteristic Mie resonances for certain in-
cident wavelengths.>!> A relevant question, therefore, is
how much of the Mie resonance effect is retained in the
photon bands. Clearly, if the spheres are too large,
single-sphere scattering is expected to be a poor approxi-
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FIG. 4. The calculated DOS of the photon modes, p(®), for
&a=12, & =1, and several values of packing fraction 8. The
dotted line corresponds to a uniform medium with the DOS
varying as @>. A well-developed pseudogap, seemingly a rem-
nant of the single-sphere Mie resonance, is seen for the sphere
packing fraction =0.3. The dashed horizontal line indicates
the region of strong Mie scattering for this case.

mation for the periodic structures; on the other hand, for
small spheres the scattering strength, which scales as
7RZ, is small enough that any Mie resonance effect is
likely to be blurred by the lattice effects. In fact, by
definition, in the limit $=0 or 1, the Mie resonance
effects would obviously be absent since in those limits we
do not have any scatterers. For the case §~0.3 shown in
Fig. 4, the first three Mie resonances occur at @ = 0.91,
1.19, and 1.33 and the scattering coefficient is
significantly large in the entire range of @ between
~0.87 and 1.35. The position and width of the pseudo-
gap compares well with the single-sphere Mie resonances
as indicated in Fig. 4. This suggests that the pseudogap
is a remnant of the single-sphere Mie resonances.

An interesting phenomenon associated with x-ray
diffraction is the Borrmann absorption.'® It occurs when
the Bragg condition is nearly satisfied, with one of the
doubly refracted rays avoiding the region of the atoms
where photoelectric absorption takes place. Absorption
is thereby minimized for this ray while the other ray
behaves in just the opposite way.?’ Thus, the first ray
propagates an anomalously longer distance than expect-
ed while the second one is absorbed anomalously faster.

A similar phenomenon is expected to occur for the
periodic dielectric structures as well. This is illustrated
in Fig. 5 where we plot the electric displacement vector
D on the x-y plane for the modes belonging to the lowest
two branches at the X point. Each branch consists of
two helicity modes with nearly identical frequencies. For
the lower two modes the magnitude of D inside the
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FIG. 5. Electric displacement vector D for the photon
modes belonging to the lowest two branches at the X point.
Each branch contains two modes which are close in frequency
and in the nature of the D field and only one of these is shown
for each branch: (a) lower branch and (b) higher branch. The
plane of the plot is the (100) plane. Note that different modes
have different magnitudes of D inside the spheres, leading to
the possibility of Borrmann absorption.

dielectric spheres is larger compared to the magnitude in
the background region while for the higher two modes it
is the reverse. This implies that if the dielectric spheres
were more absorbing compared to the background
dielectric material, then the lower two modes would be
absorbed much faster while the higher two modes would
be absorbed much less. This is the analog of the
Borrmann effect and should be observable in the periodic
dielectric structures as well.

In conclusion, contrary to the reported experimental
results, we do not find a true gap extending throughout

the BZ for the fcc structure when the vector nature of
the EM waves is taken into account. However, even
though a true gap is absent, we find that for moderate
values of the dielectric constants a pseudogap develops in
the photon spectrum, the optimal value for which is in
the range of B~ 30%-40%. We have also illustrated the
existence of the Borrmann effect in the periodic dielec-
tric structure.
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