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The photonic band structure of a face-centered-cubic lattice of spheres is calculated using the plane-

wave method for Maxwell's equations. Comparisons with the available experimental results show rather

good agreement, except that we do not find a true gap for this configuration. This we believe is due to
symmetry reasons at the 8' point.

PACS numbers: 41.10.Hv, 03.40.Kf, 78.20.Bh

The idea of employing three dimensionally periodic
dielectric structures to create gaps in the photon density
of states has recently been introduced. ' The potential
applications of such a forbidden frequency gap are fas-
cinating. Examples include the inhibition of spontaneous
emission, the modification of basic properties of atomic,
molecular, and excitonic systems, and the possibility
for studying mobility edges and Anderson localization of
photons within the gap. '

A recent experiment with microwaves has demon-
strated the soundness of the basic idea of photonic bands
in three-dimensional periodic structures. Moreover, in

one of the samples, a gap that extends throughout the
Brillouin zone was observed. Unfortunately, there was
little theoretical guidance to help find optimal dielectric
structures which will produce such gaps for these new
artificial optical media, besides the fact that the dielec-
tric contrast should be large and the Brillouin zone
should be as close to spherical as possible. Consequently,
the experimentalists had to adopt a tedious cut-and-try
approach in which dozens of fcc structures with atomic
volume filling fraction between 11% and 86% and various
refractive-index ratios were painstakingly machined out
of low-loss dielectric materials. This very time-con-
suming approach was necessary to help insure that no
possibilities were overlooked. It was found that out of
the 21 samples that were made, only one exhibits a true
photonic band gap.

Here we show that the plane-wave method can be used
to calculate the photonic bands in three-dimensionally
periodic dielectric media. The structure we studied is

the same as that investigated experimentally, and con-
sists of a face-centered-cubic lattice of spheres of refrac-
tive index n, embedded in a homogeneous transparent
host medium of refractive index nb. The photon bands
were calculated for various values of the relative refrac-
tive index, r =n, /nb, and volume filling fraction of
spheres, f. We have also studied the case in which the
spheres are air atoms which are so closely packed that
they actually overlap. This case is especially interesting
in that it was found experimentally to have a common
photon band gap throughout the entire Brillouin zone.
Overall our theoretical results are in reasonable agree-

ment with those of the experiment. This includes the
eA'ective long-wavelength refractive index as a function
of the volume filling fraction, and the size of the gap at
the L and X points for an 86% fraction of air atoms.
However, there is a discrepancy for this case at the 8'
point, where our result suggests that a gap does not exist
because of symmetry, whereas a gap is observed experi-
mentally. In addition, in the W to K direction away
from the 8' point, the gap is much more feeble than
measured experimentally.

We present here the first computation of photon band
structures based on Maxwell's equations. Our results,
therefore, fully take into account the vector nature of the
photon. The importance of a full vector calculation has
in fact been pointed out. Here we see that calculations
for scalar waves are inadequate and much too optimistic
in predicting a gap to open up at a refractive-index con-
trast of about 1.7. '' We should mention that the
plane-wave method has recently been used successfully
to calculate photonic band structures based on the scalar
wave approximation. ' Our present work shows that the
method can be extended with similar success to the full
vector case as well. ' The method is extremely simple,
and is capable of treating any form of dielectric modula-
tion. We find that convergence is slower than in the sca-
lar case, but is reasonably rapid enough for obtaining ac-
curate band structures. This is unlike conventional elec-
tronic band calculations where a convergence problem
arises for the plane-wave method because wave functions
are rapidly oscillating near the highly attractive atomic
core potentials and are plane-wave-like outside the
atomic regions.

We start with Maxwell's equations and eliminate the
magnetic field in favor of the electric field E to obtain,
for monochromatic waves of frequency co, the equation

VX (Vx E)+kb'VE =kb'E,

where V=1 —(n/nt, ), kt, =lttonb/cp, and n =n, inside
the spheres and n =nb inside the host. We can identify
kb as the energy and kb Vas the potential. Owing to the
spin-1 nature of the photon, the above equation has a
vector character and the potential is proportional to co,
and thus vanishes in the long-wavelength limit. This has
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some very important consequences for the photonic band
structures here, as well as in the photon localization
problem. '

In the plane-wave method one works with the Fourier
coefFicients

Ek = dr e '"'E(r), (2)

and

1
VK =—dre '"'V(r),0" (3)

(k —K) g(aK K
—v„K)Ek —K =0.

K'
(s)

With this equation one of the Cartesian components of
Eg —K can be eliminated. The resulting determinantal
matrix is therefore of order 2Nx2N. This procedure of
eliminating the zero-eigenvalue modes is found to speed
up our numerical calculation by at least a factor of 2,
and enables us to include more K points to improve the
accuracy of our results. The photon band structure is
then obtained by finding the eigenvalues kb of the result-
ing matrix for each value of k.

Before we give the results of our calculations that are
specific to the present problem, we want to make a few
general remarks. First, it is easy to see that in the
empty-lattice limit, i.e., V 0, the eigenvalues are given
by kb =~k —K~ and are at least doubly degenerate, be-
cause the photon can have different states of polariza-
tion. The band structure can be found in most solid-
state textbooks. It is also true that in this limit, most of
the levels are highly degenerate, especially at high-
symmetry points, and for k varying from the I point to
the edge of the Brillouin zone, the dispersion curves are
straight lines given by kb =k. A detailed plot of the

where K are the reciprocal-lattice vectors and 0 is the
volume of the fcc primitive cell. Equation (1) can then
be expressed in the form

[(ik —Ki —kb)l —(k —K)(k —K)] Eg-K

+ kb Z VK' —KEk —K' 0 ~ (4)
K'

This equation gives an infinite-order determinantal equa-
tion that can only be solved by truncation. If N
reciprocal-lattice points are included, then a 3Nx3N
matrix equation has to be solved. However, it is impor-
tant to note that this equation has zero eigenvalues that
correspond to longitudinal-photon modes. This can be
seen by setting kb in Eq. (4) to zero and working in a
coordinate system in which the z axis points along the
vector k —K. Then it is clear that the resulting deter-
minant is zero and the eigenvectors corresponding to the
zero eigenvalues have (k —K) "= (k —K)"=0 and
(k —K)-AO. These zero eigenvalue modes can be elim-
inated by the condition V D =0, where D is the displace-
ment field. This condition implies that

free-photon bands for the fcc lattice can be found in a
recent paper, " except that the degeneracy factor for each
level should be multiplied by a factor of 2.

For V&0, depending on the symmetry of V, some of
these degeneracies are lifted, and the dispersion curves
originating from the I point are linear only near the I

point, where k is small compared with the magnitude of
the smallest nonzero reciprocal-lattice vector of the lat-
tice. If we plot kb vs k for the photon bands, then the
slope of the straight portion is no longer unity, but
should be given by nb/n, a, where n, f is the effective
long-wavelength refractive index of the entire medium.

For fixed values of the relative refractive index and
volume filling fraction, the lowest-lying frequency gap is

expected to have the largest width. %'e find that this is

true in all the cases that we have studied, and therefore
we shall only report results for the lowest few bands.
Moreover, it is important to note that because of the two
different states of polarization, the lowest gap can lie

only between the second and the third bands. This situa-
tion is very different from the scalar wave case where the
lowest gap lies between the first and the second bands.

Now we are ready to discuss the results for the present
model. For the case of dielectric spheres considered
here, we have

VK =3f(1 —r)g(IKla), (6)

where the function g(x) =(sinx —xcosx)/x', and a is

the radius of the sphere. This result applies as long as
the spheres do not touch. In the experimental work of
Yablonovitch and Gmitter, two types of models were
studied. The first type consists of dielectric spheres of
polycrystalline A1203 with a microwave refractive index
of 3.06 embedded in a dielectric foam of refractive index
1.01. Samples were made with a variety of volume
filling fractions, from 11% to the closed-packed value of
74%. The second type of samples were made by drilling
spherical holes in a low-loss dielectric material which has
a refractive index of 3.5. Various samples with volume
filling fraction from 11% to 86% were fabricated. The
voids are actually overlapping when the volume filling
fraction is larger than the close-packed value of
f, =0.74. It turns out that when f)f„ there are three
separate cases that have to be considered. These three
cases correspond to c/J8 & a & c/J6, c/J6 & a
& cJ3/16, and cv 3/16 & a & c/2, where c is the length

of the side of the conventional unit cube for the fcc lat-
tice. In the first case, both the spheres and the host ma-
terial form an infinite multiply connected domain. In the
last two cases, the host material breaks up into discon-
nected star-shape islands while the spheres form an
infinite multiply connected domain. We find that for
a =c/J6, the volume filling fraction is 0.964. Therefore,
the sample which was found experimentally to have a

gap in the photon density of states and has a volume
filling fraction f=0.86 actually belongs to the first case.
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FIG. 1. The eA'ective long-wavelength refractive index for
two basic crystal structures as a function of the volume filling
fraction. The solid lines are our computed results. The experi-
mental values are shown by the 0 and x points, respectively,
for spherical dielectric atoms and spherical air atoms.

It can be shown that for this case

FIG. 2. The computed forbidden frequency gap width at the
L and X points as a function of the volume filling fraction for
air atoms embedded in a dielectric material with a refractive
index of 3.5. The experimental values at the L and X points
are labeled, respectively, by x and O. These results are all nor-
malized to the center frequency of the lowest gap at the X
point.

VK =(1 —r) 3fg(I&Ia) —— QI(g)2

0 q
(7)

where

2zI(Q) = dzcos(Q, z)(a —z )
Q a~c

x J ~ (Q (a 2 z 2) 1/2) (8)
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In the above equations, J~ is the first-order Bessel func-
tion, and two of the six Q vectors are given by Q~
=[K„2+(K~ ~ K, ) /2] '~z and Q, =(K~. + K, )/J2 in cy-
lindrical coordinates. The remaining four vectors are
given by cyclic permutations of x, y, and z. Although
the integrals can be expressed in terms of Lommel's
functions of two variables and various schemes for com-
puting them are available, ' we find it more convenient
in our work to simply compute them numerically.

Using these results together with our plane-wave equa-
tions, we have calculated the photon band structure for
various values of f and r. We find that the results for the
lowest few bands converge reasonably fast. To within an
accuracy of about a few tenths of 1%, we find that 400 K
points are sufficient for r ranging from 1/12.25 to 9.179
and for f ranging from 0 to 0.96. First we show the re-
sults for the eA'ective long-wavelength refractive index in

Fig. 1 for both the dielectric and air atoms as a function
of the volume filling fraction. The results are seen to be
in excellent agreement with the experimental results of
Yablonovitch and Gmitter.

Next we present, in Fig. 2, the computed results for
the eigenvalues for the second and third bands at the L
and X points in the Brillouin zone as a function of the
volume filling fraction for the case of air atoms. These

results are normalized to the center frequency of the
lowest gap at the L point. The agreement with the ex-
perimental results" is fairly good. In particular we find

that the X gap goes to zero for f=0.66. This is very
close to the experimental value of 0.68. The physical ori-
gin of this behavior has been fully discussed by Yablono-
vitch and Gmitter, and accordingly we plot the gap
width at the X point as a negative quantity for f)0.66.
For f=0.86 our results for the gap sizes at L and X are
both smaller than those observed in the experiment.

We have also calculated the entire photonic band
structure for k along the symmetry directions in the Bril-
louin zone. Results are obtained for the refractive-index
ratio r varying from 4 to 1 for air atoms and from 1 to 4
for dielectric atoms. For each value of r, the volume
filling fraction is varied from 0 to 0.96 for air atoms and
from 0 to 0.74 for dielectric atoms. Figure 3 shows the
results for an 86% volume filling fraction of air atoms
embedded in a dielectric material with a refractive index
of 3.5. These parameters correspond to the case in

which a common gap was found experimentally. We see
that although the overall band structure agrees reason-
ably well with the experiment, our computed band struc-
ture does not have a common gap. This is due to the fact
that the second and third bands appear to be degenerate
at the 8' point. Figure 3 also suggests that the second
and third bands are degenerate along the 8' to E direc-
tion. (Note that the K and U points are connected by a
reciprocal-lattice vector, and are therefore equivalent
points in the Brillouin zone. ) However, further investi-

gation shows that this degeneracy away from the 8'
point in the K direction is purely accidental and it is ab-
sent in general for other values of r and f The same is.
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for the fcc geometry at any volume filling fraction. Our
work suggests that it is important to find a mechanism
which will either redistribute the strength of the Fourier
coefficients of the potential in such a way that degen-
erate levels at the W point do not occur for the second
and third levels, or lift the degeneracy of these levels.
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89-J-2078, and by the Joint Services Electronics Pro-
gram.

FIG. 3. The computed photonic band structure for an 86%
volume filling fraction of air atoms embedded in a dielectric
material with a refractive index of 3.5. The spherical voids are
actually closer than close packed, and are overlapping.

also true for the near degeneracy of the second and third
bands at the U point.

In trying to obtain a true photonic band gap, we find
that the most troublesome result is at the W point where
the degeneracy is found to persist for this value of
refractive-index ratio of r =1/3. 5 for f ranging from 0 to
0.96. Further calculation indicates that this remains
true down to a value of r =1/4 for all values of f, and
that this degeneracy appears to be symmetry related.

ln the case of dielectric atoms, we find that the gap at
the W point opens up for r & 2.8; unfortunately there is
no overlap in the gaps at the L and L points for a true

gap to develop for these values of r. We have also
checked that for r around 4 the second and third bands
at L appear to be degenerate and therefore a common

gap does not exist either. We have not gone to values of
r too much larger than 4 because of the lack of suitable
optical materials that are currently available in the labo-
ratory, and because in our calculation the size of the ma-
trix required for convergence becomes prohibitively
large.

In summary, we found that for r ranging from —,
' to 4,

thus including both the air- and dielectric-atom cases,
there is no common gap in the photonic band structure
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