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Solitary-Wave Velocity Selection in Self-Induced Transparency
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We consider self-induced transparency beyond the slowly varying envelope approximation. For a car-
rier wave of given frequency, we show that the possible steady-state pulse velocities form a discrete set,
qualitatively changing the previous picture of self-induced transparency. The selection mechanism can-
not be seen in a perturbative expansion about the slowly varying envelope approximation.

PACS numbers: 42.50.Qg, 51.70.+f, 71.36.+c

The term self-induced transparency (SIT) was coined
by McCall and Hahn in 1969. They investigated the
propagation of light in nonlinear dielectrics formed by
two-level systems. In such media, if the light is of low

intensity, there is no transmission inside a frequency gap.
However, they found that for intense enough pulses, non-
linearity can make the medium transparent again. They
demonstrated' such SIT eII'ects experimentally and the-
oretically, generating much interest and further work.

Theoretical analyses of SIT use a semiclassical
description [Eqs. (1) and (2)] involving a number of as-
sumptions. The dielectric (gas, semiconductor, etc. ) is
modeled as an ensemble of noninteracting two-level sys-
tems (atoms, excitons, etc.). The electromagnetic field is
treated classically and the two-level systems semiclassi-
cally. There are no impurities or finite-temperature ef-
fects, relaxation times are infinite (no damping), non-
resonant losses are absent, etc. For simplicity, one takes
fields which are x and y independent; then the Maxwell
wave equation becomes
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where x=2d/h. u and v are the in-phase (parallel to E
or dispersive) and out-of-phase (orthogonal to E or ab-
sorptive) components of the macroscopic polarization P

E is the electric field of magnitude 8, and P is the polar-
ization due to the dipoles of density N. Each dipole mo-
ment has strength d. A true quantum dipole (an atom in

a gas, an exciton in a semiconductor) has a series of en-

ergy levels. For most problems of interest, however, one
can restrict oneself to the ground state (of energy zero)
and first excited state (of energy hto, ) for each dipole.
The polarization vector has, up to a normalization con-
stant, components u and v which satisfy the following
Bloch equations in the frame rotating with E at angular
velocity B(t ):

relative to E, and w is the population inversion of the
medium; they satisfy p +v +w =1. The atoms are
predominantly in the ground state when w = —1.

McCall and Hahn considered a circularly polarized
pulse with a carrier wave of frequency m. On the time
and length scale of this carrier wave, the envelope is typi-
cally slowly varying. Thus it is natural to take the slowly

varying envelope approximation (SVEA), ' where all

subleading (in this limit) terms are dropped from the
equations. Using this approximation, they showed that
after a pulse had propagated a few classical absorption
lengths into the medium, the envelope evolved into a
symmetric hyperbolic-secant shape. In fact, they found
a family of solitary waves with arbitrary pulse width r
and velocity V c/(I+2trxtoNdr ). Solitary waves are
localized waves which are steady state, i.e., which de-

pend on z and t only through (= t —z/V. In 1971,
Lamb showed that the Maxwell-Bloch (MB) equations
in the SVEA form an exactly integrable system. This
meant that the propagating hyperbolic-secant pulses
found by McCall and Hahn were in fact solitons. Soli
tons are solitary waves which preserve their form even if
they collide. '

There have been extensions of the work of McCall and

Hahn to include spatial dispersion "' and chirp-
ing. ' In particular, Akimoto and Ikeda ' devel-

oped a systematic perturbative expansion about the
SVEA for various types of pulses based on a power-series
expansion in a small parameter related to the pulse
width. All these perturbative studies find pulse shapes
which depend continuously on the pulse width r so that r
is an arbitrary parameter in the problem. We shall see
that this is not true of the exact steady-state pulse solu-
tions of the MB equations: For a given carrier-wave fre-
quency, steady-state pulses can propagate only at special
parameter values, and at certain velocities, a phenome-
non we call velocity selection. This has not been realized
previously because it cannot be seen at any order in a
perturbative expansion about the SVEA.

Let us look for steady-state solutions to the full MB
equations (1) and (2). These equations have translation-
al and rotational symmetry. Following the standard pro-
cedure for obtaining self-similar solutions to partial
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diAerentia1 equations, '" the fields are of the form

E(t,z ) = 8(t —z/V) a(t, z ),
P (t, z ) = —, N h x' ju (t —z/V )a (t, z )

+t (t —z/V)b(t, z)l,

(3a)

SUEA. Equation (6) is a first-order linear diA'erential

equation for p, from which one can derive a first integral:
' 2
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This contains a phase modulation (chirping) p for the
electric field explicitly. The electric field is factorized
into the slowly varying pulse envelope 8 and the rapidly
oscillating carrier wave a; x and y are the unit Cartesian
basis vectors. The envelope is a function of t —z/V,
where V is the undetermined steady-state pulse velocity.

Taking components along x and y, Eqs. (1) and (3)
give rise to two second-order coupled ordinary differen-

tial equations. As shown by Akimoto and Ikeda,
"'

the
quantities Kc/co and V/c satisfy conditions which can be
obtained by linearizing these equations in the tail of the

pulse where the excitation is very weak. It is convenient
to introduce the dimensionless electric-field amplitude
E =ice/tot T, where ALT =8ttNd /h is the gap-size fre-

quency, and also the dimensionless time g =(t —z/V)/r,
where T: describes the exponential rate of decay of the
pulse in the tail. Then Eqs. (1)-(3) become (the over-

dots mean d/dg)
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This equation shows that if one knew a relation between
E and w, then p(E) would follow. Similarly, use of Eqs.
(7)-(9) would determine u(E). After substitution, this
would turn Eq. (5) into a nonlinear second-order
differential equation for E alone. Let us take w(E) to be

a power series in E. Then u and p are also of this form,
and the coefficients of these series can be determined re-

cursively. Equation (5) then becomes an ordinary differ-

ential equation (ODE) for the electric-field amplitude E
only:

E =E+C(E +CUE + ' ' ' = dV(E)/dE,

where the C's are calculable. To leading order (includ-
ing only Ci), the solution is a hyperbolic secant, corre-
sponding to the SUEA limit. One can do systematic ex-

pansions about this by including higher-order terms in

V(E). This has enabled us to derive very generally the
various limits previously considered using other pertur-
bative methods. ' For instance, when 6=0, this gives
the expansion in Ref. 5.

The main point of this Letter is to show that such per-
turbation expansions are misleading. First note that the
condition w —

1 and E 0 at g
= —~ specifies, ex-

cept for an overall sign, the solution to Eqs. (5)-(9)
everywhere modulo translations in g and ft. Thus impos-
ing the boundary condition at both g

= —~ and g =+~
overconstrains the problem, making it ill posed: In gen-
eral, there are no solitary-wave solutions. In order to un-

derstand why the perturbative expansion cannot see this
problem with the boundary conditions, consider the fol-
lowing. If one were to use Eqs. (5)-(9) to obtain an

equation for E alone, it would be of sixth order. Take
for illustrative purposes an equation of the form

efE + }+E—E+E =0. (12)
Au = (A+ AP) i,
Ai = —(A+A/) +uE ,w

Aw= —Ev .

(7)

(8)

(9)

There are three independent parameters for these equa-
tions: &=(to —to, )/toLT, A=1/roLTr, and s =I/tor=A/
(&+to, /tot T). The coefficients a, P, and y [defined in

Ref. 7(a)] as well as Kc/co and V/c are known functions
of 6, A, and s. One must solve these diA'erential equa-
tions under the boundary condition at g = ~ ~ that the
electric field vanishes, E =0, and the dipoles of the
dielectric are in the ground state, w = —l.

Consider first a perturbative expansion about the

For s=0, this is of the same form as Eq. (11) for which
there is a constant of motion: One has an exactly inte-
grable system. This is indeed what happens when one
takes the SVEA. An analogy for such equations is a ball
rolling down a potential V(E); the conserved quantity is
the sum of the kinetic and potential energies. A solitary
pulse corresponds to a trajectory from E(g = —~) =0 to
E((=+~) =0 which has zero total energy. When
e =0, energy is conserved so the trajectory leaving
E =E =0 is guaranteed to return to this point. Howev-

er, as soon as a&0, this is not the case, and in general,
the returning trajectory misses the E =E =0 point:
There is no reason to expect the continuation of the solu-
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tion which satisfies the boundary condition at —~ not to
have any of the growing modes as g +~. Equation
(12) is qualitatively diA'erent from Eq. (11) because it is

of higher order: s represents a singular perturbation
which destroys the exact integrability. In particular,
there are nonanalyticities in the solutions as c 0.
When x&0, one expects to have to tune the parameters
A, 5, and s in order to be able to satisfy the boundary
conditions at both g= —~ and g=+ee. This nonex-
istence of solitary-wave solutions cannot be seen to any
order in perturbation theory in e: At each order
(E =pe"/E„), the electric-field amplitude E„satisfies a
linear second-order ODE for which there is always one
solution which satisfies the boundary conditions E„O
at g=+ ~. The E„can be calculated iteratively and
never signal any problem. This explains why no previous
groups ever realized that expansions about the SVEA are
misleading and that solitary waves generally do not exist.

To find solitary solutions, one must first make the
problem well posed. We follow the procedure developed
for similar boundary-value problems in other fields. ' '
Equations (5)-(9) have translational symmetry in g and
()), and are invariant under g

—
g, t —t. Also,

changing the sign of E, u, and v is a symmetry. Since
the boundary conditions at g

= —~ define the solution
everywhere up to such translations and the sign symme-

try, it is not difficult to see that solitary-wave solutions
(after shifting () have w and p even in (. Furthermore,
E must be either even or odd. The standard hyperbolic-
secant pulses are even, so we will restrict ourselves to this
case. Then u is even and v is odd. Let us thus consider
the ODEs (5)-(9) on the interval ( —~,0] with the
same boundary conditions at (= —~ and the condition
t =0 at g =0. This new boundary problem is well posed,
having in general a unique solution. Then if E=0 at

( =0 also, it is easy to see that one can construct a
solitary-wave solution on the whole g axis by reflection of
the solution on the half line with a change of sign for v.

For eAO, in general EAO at (=0, corresponding to a
solution which has some amount of growing (bad) modes
as g +~. Thus the condition for existence of a
solitary-wave solution is E =0 at the ( where t =0, and
this condition can be interpreted as forbidding any cusp
in E.

We numerically integrated the system Eqs. (5)-(9).
For ( in the tail, the initial conditions on the fields can
be obtained from the perturbative expressions for E, E,
()), u, t, and w. We evolve forward and find the g where
v =0, and then determine E there. Call this value
E„~(A,A, s). As suggested by asymptotic expansions'
and the above arguments, in general Et,p&0, and solitary
waves do not exist for those values of h„A, s. However,
we found that Et,-„changes sign when the parameters are
varied so there are surfaces in the h„A,s space on which
Et p

=0 These give the parameter values for which
solitary-wave solutions exist, and thus provide the select-
ed velocities for steady-state pulses. ' '
2640

We determined numerically the curves (A, A) for
which there are solitary solutions at fixed toLT/to, . As
can be seen in Fig. 1, one can tune the parameters A, h, ,s,
to obtain Etp 0 really only inside the gap. There are
several branches of solutions which rise from h, =O and
set at h, =1. Other branches stop inside the gap due to
the appearance of multiple solutions to v =0. Full inver-
sion (w =1) at the pulse peak is never realized; rather w

decreases as the pulse width increases.
For 6 outside the gap, we found that when A 0,

E„~=exp[ —k(A, s)/A], where X is a function which was

found numerica11y. Since A appears in front of the
derivatives in Eqs. (5)-(9), it plays the role of a singu-
lar perturbation and Et'p can be thought of as the
amount of bad modes as g +~. It should be zero to
all orders in perturbation theory in A, as indeed the
above form indicates. This behavior implies that there
are no solitary solutions in this limit.

Our velocity selection mechanism is subtle but should
be verifiable experimentally in certain systems. SIT ex-
periments to date have not focused on obtaining steady-
state pulses or on carefully measuring pulse velocities.
Since steady-state pulses exist only inside the gap, one
will need to be able to experimentally resolve the gap
rather well; in particular any line broadening must be
small compared to ALT. This pretty much rules out do-

ing experiments with gases (e.g., Rb ( ) s(')). However,
the gap is large enough in many semiconductors to per-
mit an experiment to test our theory. Consider, for in-

stance, a local-optics (m =~) semiconductor with pa-
rameters like CdS. Take hn), =2.55 eV and ))lroLT =2.0
meV, and assume (as in the case of CdS) that the line

broadenings due to the finite relaxation times T i and T2
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FIG. 1. Yalues of the parameters A and h, for which
solitary-wave solutions exist. We have taken coilcot.T=)000.
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are small enough that the structure inside the gap is not
washed out. Then the top branch of Fig. 1 at 4=0.3
corresponds to a pulse of width r =0.95 psec and velocity
V/c=3. 4x10 . On the same branch at 6=0.9, we

find r =2.5 psec and V/c =3.65x10 ", which should be
measurable.

In summary, the solutions of the full MB equations
diAer qualitatively from the solutions within the SVEA:
Steady-state pulses do not exist for arbitrary pulse width

r, but only for certain selected values which in turn
determine selected velocities. Also, such solutions are
solitary waves rather than solitons because the system of
Maxwell-Bloch equations beyond the SVEA is not exact-
ly integrable. Furthermore, since the pulse shape de-
pends on 6, contrary to the case of the SVEA, there can-
not be steady-state pulses when the absorption line is in-

homogeneously broadened. Comparison of our results
with experiments wi11 be of major interest. For instance,
is steady-state pulse propagation feasible inside the po-
lariton gap of a semiconductor? By tuning the laser fre-
quency co in the gap for a specific pulse width r, it might
be possible to observe steady-state propagation and to
measure the selected velocities.
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