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Flux-Flow Resistance in Frustrated Josephson-Junction Arrays
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%'e carry out equilibrium and steady-state simulations of a periodic square Josephson-junction array
in the presence of a transverse magnetic field giving a uniform frustration of f= —, . We find a first-order

transition to the low-temperature superconducting phase. Linear resistivity above T, and nonlinear

resistivity below T, are interpreted in terms of vortex Auctuations.

PACS numbers: 74.60.Ge, 64.60.—i, 74.50.+r, 85.25.Dq

Two-dimensional periodic arrays of Josephson junc-
tions in a transverse applied magnetic field have been the
subject of much theoretical and experimental investiga-
tion. ' The magnetic field serves to induce an ordered
lattice of vortices in the ground state, analogous to the
flux-line lattice in the mixed phase of a type-II supercon-
ductor. Fluctuations of vortex excitations play a key
role in determining the nature of the phase transition
and other physical properties of these systems. The
study of Josephson arrays is now of renewed interest
with the discovery of the high-temperature superconduc-
tors. In these type-II materials, with high T, and large
x, great attention has recently focused on the importance
of flux-line fluctuations in determining phase boun-

daries and resistivity due to flux flow or creep. The
large anisotropy between the copper-oxide planes has

suggested two-dimensional behavior in some limits.

However, relevant material parameters, such as the pin-

ning mechanisms important in flux-flow resistance, are,
in general, poorly characterized. The 2D Josephson ar-

ray, where geometry and all microscopic parameters are,
in principle, known, can therefore serve as a useful sys-

tern for studying the response of highly correlated vor-

tices to temperature, applied currents, and magnetic
fields.

The Hamiltonian for a square L&I. array of Joseph-
son junctions is

currents in units of Io, and distances in units of a.
Detailed equilibrium ' and dynamical '" studies

of the model (1) have been carried out only for the sim-

plest fractional values f=0, —,', and 3 . In this work we

consider the case f —', , which we chose as the simplest
fraction which nevertheless has a relatively complicated
ground-state vortex lattice. This structure is shown as
the inset in Fig. 1. Since —,

' = —,', the ground state is

seen to consist of striped domains of the f= —,
' -like

ground state (i.e. , a checkerboard pattern) separated
every five cells by a domain wall. ' The ground state
thus has long-range order with translational periodicity
of 5 along the array axes, but a local short-range order
with translational periodicity of 2. This two-scale struc-
ture may be viewed as arising from the competition be-
tween vortex-vortex interactions and the effective square
periodic pinning potential implied by the array structure.
Our interest is to investigate the effects of this two-scale
structure on the steady-state resistive behavior. We also
note here that the ground state breaks the cubic rotation-
al symmetry of the square array by aligning the stripes
along a particular diagonal direction.

We start by considering the equilibrium behavior of
the model. Metropolis Monte Carlo simulations were
carried out using the Hamiltonian (1) with periodic

P = —Jo g cos(8, -8; -A;, ),
(i,j )

where 8; is the phase of the superconducting node at site

i, A;j =(2e/hc) fJ A dl is the integral of the vector po-
tential from node i to node j, and the bare critical
current of an isolated junction is Io=(2e/It) Jo. The A;i
obey the constraint that the sum around any unit cell of
the array is a constant,

A;J+Att, +At, t+At; =2nf,
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where the uniform frustration f=Ha /4&c is the number

of flux quanta @0 of external magnetic field H per unit
cell of area a of the array. The induced density of vor-

tices in the phases 8; is equal to the frustration f.
Henceforth, temperatures will be cited in units of Jo,

FIG. 1. Energy density u vs temperature T. Hysteresis
upon successive cooling and heating indicates a first-order
phase transition at T, =0.21. Results are for a lattice of length

L 30. Inset: The ground-state vortex lattice; a black square
represents a unit vortex in the phases 8;.
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boundary conditions on L=10 to 40 square lattices.
5000 passes per site for equilibration, folio~ed by 20000
passes per site for averaging, were used to compute the
energy density u, specific heat C, and helicity modulus Y,
according to standard fluctuation expressions. Two to
four independent runs were used to improve statistics
and estimate errors. C was found to have a narrow peak,
and Y to vanish, at T, =0.22. Hysteresis in u upon suc-
cessive cooling and heating, shown in Fig. 1, indicates a
first-order, vortex-lattice-melting transition. This con-
trasts with the second-order transitions found previously
for the f=0 and —,

' cases (f=0 has a Kosterlitz-
Thouless transition due to the unbinding of neutral vor-
tex pairs; f= —,

' has an Ising transition due to domain

excitations of the doubly degenerate ground states ).
The discontinuous jump in Y at T, appears close to the
Kosterlitz-Thouless universal value, ' as is found for

f=0 and —, .
We next carry out finite-temperature dynamic simula-

tions, using the equations of motion for the resistively
shunted junction model, as described in previous work on

the f= —,
' case and elsewhere. '" ' We calculate the

voltage drop per unit length, V (measured in units of
R„IO, where R„ is the normal shunt resistance across
each junction), for an applied dc current, uniformly in-

jected and extracted from opposite sides of the array.
Periodic boundary conditions are applied in the trans-
verse direction. Our results are for a lattice of size
L =20. Averages are computed by integrating the equa-
tions of motion over typically 40000 discrete time steps
of At =0.05(2eR„Io/h). An initial 5000 steps were dis-

carded to achieve steady state. Two independent runs
were made to improve statistics and to estimate errors.
T=O simulations yield a critical current density for the
array of 1,=0.10. In Fig. 2, we plot R= V/I vs T for

(2)

~here n, is the integer vorticity cell i. For T=0.205(T„Fig. 3(a) shows S(q) with two 8-function peaks,
corresponding to long-range order with translational
periodicity of hr =5/J2 along the diagonal. This gives a

0.4
T=0.20(a)

I.=4 0

q = 2&f/~2
0

2 ('I()

two values of applied current density I=0.02 and
0.04&I,. For T) T, =0.22, R approaches the finite
linear resistivity as I 0. For T & T, , Y) 0 implies the
absence of vortex diffusion at zero current, and hence V
is a nonlinear function of I; R 0 as I 0. In Fig. 2
this is evidenced by the strong dependence of R on finite
I for T & T„with R rapidly decreasing as I gets smaller.
Since the transition is first order, we expect a discontinu-
ous drop to zero in the linear resistivity at T, (this con-
trasts with the f=0 and —,

' cases where resistivity drops
continuously to zero at T, due to the second-order nature
of the transition). In Fig. 2, at the smaller 1=0.02, this
is seen as a rapid drop in R just below T, . At larger I,
the drop becomes more gradual. Above T„ the resistivi-

ty R shows a clear plateau up to T=0.3 before rising to
approach the normal-state resistivity at T-1. We now

interpret this plateau in terms of correlations within the
disordered vortex fluid.

In Fig. 3 we plot the equilibrium (I=O) vortex struc-
ture function S(q) versus q along the diagonal (1,1)
direction, for a lattice size L =40:
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FIG. 2. Resistivity R=V/I vs temperature T, for values of
the applied dc current, I =0.02 and 0.04. The transition tem-
perature T, ( —, ) =0.21 is determined by equilibrium simula-

tions of specific heat. The transition temperature of the f= —,
'

model is shown for comparison. A plateau in R is seen for
0.2 T+0.3. The dashed line is a guide to the eye only. Re-
sults are for a lattice of length L =20.
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FIG. 3. Equilibrium structure function S(q) vs q along the
diagonal (1,1) direction. For the finite lattice of length L =40,
only the points Iq„, I =(2z/L)&2m, m =0, . . . , L/2 are com-
puted. (a) T=0.20 ( T„with two b-function peaks indicating
long-range order. (b) T=0.225 )T„ in the resistivity plateau.
The peaks have broadened but retain the same height ratio as
in (a), indicating that ground-state order remains locally. (c)
T=0.4» T, . The single broad peak indicates an isotropic vor-
tex fluid. Solid lines are guides to the eye.
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FIG. 4. (a) Differential resistivity dV/dl vs applied dc
current I at temperature T=0. 1 ( T, . The rise to the first pla-
teau indicates the onset of vortex flow at I) 1,=0.10. (b)
W/L', the density of domain wall length between local f= —,

'-
like regions, vs I. The sharp increase at I=0.5 coincides with
the second plateau in dV/dl Dashed lines are gu. ides to the
eye only. The inset in (b) shows a snapshot of a vortex
configuration in the "creep" regime at I=0.02 (I,. The inset
in (a) shows a snapshot vortex configuration at high current,
I =0.8. Results are for a lattice of length L =20.

fundamental peak at q0=2z/dr, and the first harmonic
at 2qo. At T=0.225 & T„ in the resistivity plateau, Fig.
3(b) shows these two peaks to be broadened with a finite
width hq. While this broadening signals the loss of
long-range order, the continued presence of the two har-
monic peaks, with the same ratio of heights, indicates
that the ground-state structure persists locally on length
scales -z/Aq = 6. As T increases above T„, these peaks
continue to broaden until they merge at T-0.3, the end
of the resistivity plateau. In Fig. 3(c) we show S(q) for
T=0.4. There is now only one very broad peak, with a
maximum at q =2zJf, corresponding to the average
vortex separation for an isotropic fluid of density f.
Thus we see that correlations within the vortex fluid

phase significantly affect the flux-flow resistivity of the
array. The onset of linear resistivity at T, =0.22 is due
to melting of the long-range order of the vortex lattice.
Resistivity may be viewed as arising from the motion of
domain walls separating locally ordered regions of the
vortex fluid. But the rapid rise in resistivity at T=0.3 is
due to the "melting" of the local f= —,

' -like structure,
yielding an isotropic vortex fluid. In this isotropic fluid,

all vortices are free to move and contribute to the resis-
tivity.

We now consider behavior below T, . In Fig. 4(a) we

show the differential resistivity dV/dI versus current I,
at the temperature T=(0.1-0.5)T,. dV/dl is obtained
from numerical difl'erentiation of the simulated I- V

curve. For I (I,=0.1, dV/dI raises rapidly from zero
giving evidence of nonlinear resistivity due to thermal ac-
tivation. The inset in Fig. 4(b) shows a snapshot of a
vortex configuration at I=0.02 in this vortex "creep" re-
gime. It is important to note that the vortex creep here
is apparently not due to simple pair unbinding (as in the

f=0 case), nor a rigid slipping of the ground-state lat-
tice as a whole, as both of these processes would leave
the ground-state structure largely intact. By contrast,
the snapshot in Fig. 4(b) shows a much more fragmented
domain structure. In particular, the cubic symmetry of
the square array, which is broken by the ground state
(see inset in Fig. 1), now appears restored. We have cal-
culated an order parameter p~, [see Eq. (2)], with qo giv-

ing the fundamental peak of Fig. 3, and find the phase of
pq, to have random slips of size 2' as a function of time,
with a rate that increases with I. pq with qo in the per-
pendicular ( —1, 1) direction is equal in magnitude to
pq„with random phase slips seemingly uncorrelated to
those of pq, . This suggests thermal nucleation of critical
domain excitations, which cause local slips in the vortex
lattice structure. Similar domain excitations have been
seen in the f=

2 and —,
' models. '

For I) I„dV/dI levels out to a plateau, but at
I=0.5, starts to increase again. We interpret this be-
havior in terms of breaking of the local f= —,

' -like struc-
ture. In Fig. 4(b) we plot the wall line density W/L
versus I, where W'is defined as the number of junctions
which separate cells which are either both filled with a
vortex or both empty. W measures the length of domain
walls separating local f= —,

' -like structures. We see in

Fig. 4(b) that, for I, =0.1(I(0.5, IV is flat and only
slightly higher than the I 0 value. This suggests that
the corresponding plateau in dV/dI is a state of freely
flowing domains of the vortex lattice, due to unpinning of
the domain walls. For I 0.5, W has a rapid rise, indi-
cating a proliferation of domain walls as the local

f= —, -like structures break up giving the increase in

dV/dl. For large enough I, dV/dI must approach its
asymptotic limit dV/dl-Ry. This occurs at I=In, the
single-junction critical current, and results in the second
plateau in Fig. 4(a). A snapshot of a vortex config-
uration at I=0.8 is shown as an inset in Fig. 4(a). We
have computed S(q), Eq. (2), for I =0.8, and find peaks
at the same q characteristic of the ground state, as in

Figs. 3(a) and 3(b). However, the ratio of heights of the
first harmonic to the fundamental peak is now twice
what was found for the ground state. This demonstrates
the breaking of f= —,

' -like structures. The vortex fluid is
not isotropic, as in Fig. 3(c), since the nonzero current
defines a direction. Thus, as was shown for linear resis-
tivity R above T„ the difl'erential resistivity dV/dI below

T, can be viewed as a two-step process. First, one has
the onset of domain flow at I & I„where the local order
is that of the vortex ground-state lattice. Then one has
the breaking up of local domains of f= —,

' -like structure
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to give a more disordered vortex fluid. Qualitatively
similar behavior in the f= —,

'
model has been suggested

by the simulations of Falo, Bishop, and Lomdahl. '

Our results suggest that local order, i.e., strong but
finite-range correlations, may be more important than
true long-range order in determining the size of the
flux-flow resistivity. This is supported by recent experi-
ments of Rzchowski et al. ' who measure R(T) for frus-
trations f=0.52 and 0.54. They find a resistivity similar
to f= —,', but with a thermally activated low-temperature
tail, which they attribute to the motion of defects in an
otherwise f= —,

' -like vortex. Similar behavior ' ' is seen
for very small values of f, near f=0. Such considera-
tions may be of relevance to behavior in disordered su-
perconductors, where random pinning sites destroy' the
long-range order of the local triangular flux-line lattice.
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