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Resistivity of High-T, Superconductors in a Vortex-Liquid State
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The theory of pinning of a vortex liquid by weak disorder is developed. Two different vortex-liquid
dissipative regimes are shown to exist: the flux flow above some crossover temperature T/, where the
vortex liquid is unpinned, and the thermally assisted flux flow belo~ T&. The activation barriers in the
latter regime are those associated with the plastic motion of the vortices in the liquid.
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One of the most interesting features of the new high-

T,. superconductors is the remarkable broadening of the
resistive transition in the presence of a magnetic field. '
The first detailed investigation of the resistive transition
in the mixed state' revealed a current-independent and
thermally activated resistance p-poexp( —Uo/T) with

Uo ranging from 10 K at magnetic field H=10 T to
10 K (H=0. 1 T) for Y-Ba-Cu-O. More recent trans-
port measurements showed a crucial change in the
current-voltage (I-V) characteristics at some line Tg(H)
in the H-T plane: Above Tg(H) a linear resistance was
found which depends exponentially on temperature
whereas below Tg (H) the voltage V exhibited an ex-
tremely nonlinear current dependence: Veeexp( —A/
j'). This behavior was attributed' to the transition from
an unpinned viscous regime (vortex-liquid state) to the
pinned regime (vortex-glass state) of motion of vortex
lines. The line Tg(H) coincides with the irreversibility
line as measured from ac susceptibility.

One can distinguish two different "vortex-liquid" re-
gimes. ' In the high-temperature regime the resistance
versus temperature curves show a gradual decrease of
the resistance down to some temperature Tt, [p(Tt, )
-0.2p„, where p„ is the resistance in the normal state].
Below Tk, the resistance drops exponentially: p
tx exp( —Uo/T), Uo(Tk) » Tk. Sometimes this cross-
over manifests itself as a "kink" or a "shoulder" in the
resistance curves. '

The melting of the vortex-line lattice (VLL) in the ab-
sence of pinning and the formation of a vortex liquid was
studied by difTerent authors using the Lindemann cri-
terion. Because of the high critical temperature, a large
Ginzburg-Landau parameter K, and a large anisotropy,
the melting was predicted to occur well below the mean-
field H, 2(T) line.

In the absence of pinning both the vortex lattice and
the vortex liquid move under an applied current, leading
to a linear flux-flow resistivity ps,„=p„B/H,2. Disor-
der produces barriers for the vortex motion and three
difl'erent situations can be distinguished. (i) The energy
barriers Uo are lower than the temperature and can be

omitted, p= pti, „. (ii) The barriers Uo» T, but do not
depend on current j. This corresponds to the thermally
assisted flux-flow ' (TAFF) regime: p tx: exp( —Uo/T). ' '

(iii) The barriers U(j) grow unlimitedly with decreasing
current j and the linear resistivity drops crucially
(p~,„,.„, 0). This state is referred to as the vortex-glass
state.

In Ref. 12 it was supposed that the pinned vortex solid
is a vortex glass. The 3D collective-creep theory, '

describing the dynamics of the vortex glass formed by
weak short-range disorder, predicts the activation bar-
riers U(j) for the VLL motion to grow as U(j) tx:j
this results in an I-V curve of the form Veeexp( —3/
j'). The exponent a has been calculated for difl'erent re-
gimes of collective creep. ' At large enough magnetic
field and high temperatures, a= —,

' has been predicted,
which is in reasonable agreement with experiment.

In this paper we investigate the inAuence of quenched
disorder on the properties of a vortex liquid. In order to
simplify formulas we do not take into account the anisot-
ropy parameter in the calculations, but include it in our
final results. We consider short-range disorder with the
spatial scale of the random potential less than the vortex
core radius g and assume this disorder to be weak and
not to affect the melting transition.

The observed exponential drop in resistance with de-
creasing temperature indicates that the vortex liquid is
pinned in the interval Tg & T & TI, . From the naive
point of view, however, there should be no pinning at all
in the vortex-liquid state. The interaction between the
vortices and the random potential is much weaker than
the intervortex interaction and, since the latter is rela-
tively small in the liquid state, the random potential
seems to be even less important. Therefore, the existence
of pinning producing large barriers and an exponential
drop of resistance seems to be quite surprising and in-
compatible with the concept of weak pinning.

On the other hand, the single vortex line was found to
be in a disorder-dominated pinned phase at any tempera-
jure;' this means that one vortex is always in a "glassy
state. " In fact, if there exists a finite barrier U() for vor-
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tex motion, the random potential would become ir-
relevant at temperatures T & Up. One can ask the oppo-
site question: Why are the barriers for vortex-liquid
motion independent of the applied current, while for the
single vortices they grow unlimitedly?

To understand the nature of the vortex pinning in the
vortex-liquid state let us focus first on the role of thermal
fluctuations in the pinning of the vortex-solid state. '

Above the depinning temperature T~ —(@pBm/M)' /
(2trtc), the mean-squared value of the thermal displace-
ment u(3h =(u )r/ = g(T/T~) ' becomes larger than
the core size g and the thermal motion of the vortex lines

averages the vortex core pinning over the area uph. Then
the characteristic averaged range of the random poten-
tial can be approximated by rf=(g +u~h)'t and the
critical current j, decreases rapidly with increasing tem-
perature. ' ' The procedure employed in Ref. 14 to find

j,(T) was in fact the result of first averaging over
thermal fluctuations and then over randomness. Such an

approach can be used only if the characteristic time of
the thermal phononlike fluctuations mph is much less than
the characteristic time of pinning Tp Tph can be es-
timated as' r~h Ia-k /4p, where the friction coeffi-
cient I =BH,2/p„c, a is the VLL constant, and 4p is

the flux quantum. We show below that the characteris-
tic time of pinning is r~;„=rf/v„where v, =j,B/cI.
One can easily find that r~;„-r~h(TX /@pa) ' j p&/j, a,
where jp @p/A, g is the depairing current. Since we will

consider temperatures T & T~ and weak collective pin-

ning [the latter means that j, «jp(g/a) ], we obtain
r~;„&& r~h and the procedure of Ref. 14 is justified.

The point to be noted here is that the thermal fluctua-
tions smoothen the vortex cores considerably, but the
VLL stil! preserves its periodicity and the interaction of
the periodic structure with disorder provides pinning at
temperatures lower than the melting temperature Tg.

Now we turn to the vortex-liquid state. Recall that in

a "conventional" liquid all the characteristic times are of
the same order as r~h. Therefore, on averaging over
thermal fluctuations during the time rp » Tph one ob-
tains completely smoothened homogeneous vortex struc-
ture and the pinning is absent.

This consideration does not hold for the very viscous
liquid, where large "smoothening times" exist. If the
characteristic smoothening time r~( is large (r~(&&r~;„),
the thermal averaging during the pinning time rp;„ is not
complete and the vortex configuration retains its inhomo-
geneous structure, which is pinned effectively by the ran-
dom potential. Exponentially large smoothening times

Tp) in the vortex liquid can be provided by high energy
barriers Up) associated with thermally activated plas-
tic motion of the vortex structure. In this case, rp) ~ph

xexp(U~(/T). The characteristic plastic barriers have
been estimated to be'

where m and M are the masses in the a b-plane and
along the c axis, respectively, and X is the London
penetration depth for Hllc. Large barriers in the vortex
liquid can also arise due to entanglement of vortex lines.
The motion of the vortices with respect to each other in

such an entangled liquid can be eA'ected by means of cut-
ting and reconnecting of the vortex lines. In the field
K»H, ( the reconnection barriers are also estimated to
be of the same order as (1) but with an additional nu-

merical factor. Note that the energy (1) is of the order
of the energy of the vortex segment of length -a and
therefore this estimate can be applied to any vortex de-
forrnation with spatial scale -a.

The inhomogeneities in the vortex liquid are relevant
as long as Tp' + ~p). With increasing temperature the
characteristic plastic barriers decrease, and a crossover
from the pinned to the unpinned regime takes place at a
temperature Tt„where r~;„= r~l-r~hexp(U~~/T). This
crossover can manifest itself as a "kink" or a "shoulder"
in the resistive curve. Note that because of the weakness
of the pinning, r„;„»r~h and, consequently, U~((Tt, )
» Tk, in agreement with experimental data.

To find the characteristic time scales we explore the
pinning of the vortex liquid more rigorously. To do this
we use the dynamical approach developed first in Ref. 17
and modify it for the case of the vortex motion in a
liquid state. We consider the motion of a vortex struc-
ture under the action of a constant Lorentz force j &&B/c

due to an applied current j& j, in the presence of a
weak random potential

Uf,„=gV(r)p(r~ r„(z,t)),— (2)

which is treated as a small perturbation. Here V(r) is

the quenched short-range disorder potential, (V(r) V(r'))
= y(2tr) 8(r —r'), ( ) denotes the average over disor-
der, p(r~) describes the interaction of the vortex core
with disorder, p(r&) 0 at r& & g, we sum over all vor-

tices, and the field lies along the z axis. The position r;
of the ith vortex with respect to the disorder potential
can be written in the form r; =r;+vt+ lip, where r, is
the undisturbed position of the ith vortex in the frame
moving with constant velocity v and up;„;(t,z) is the
small disturbance in the position of the ith vortex due to
the random potential. The constant velocity is
v =vp+ 8v, where vp =jx B/I c is the velocity of the un-

pinned liquid due to the Lorentz force and Bv is the
small deviation of the velocity caused by disorder. Pin-
ning becomes relevant when Bv-v and the condition
Sv(v, )-v, determines the critical current j, =v, t c/B.
The correction bv can be found from the self-consistent
equation

I bv=(fr;„)= QV(r)Vp(r —r, —vt —rrv;„)). (3)
I

Uf)(-dm/M +pa/8n X (x (T, —T)//~H, The random displacement u~, „(r,t) is related to the pin-
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ning force fp;„by

up, „(r,t) =
J dr|dt ~G(r, r~ ,t, t. |)fp, „(r~,t ~),

where G is the response function of the vortex liquid.
Since the pinning potential is weak, up;„varies slowly
from vortex to vortex and the subscript i is omitted.

Substituting (4) into (3), taking the Fourier trans-
form, and performing averaging we obtain

"d kd'k k2( (k t)(2ra' " (2~)'
sin(k~~vt)

x S(k, t)G(0, t) (5)

= —,
' 7. d.G(.)

where k~~ is the k-vector component along the vo direc-
tion, G(0, t)—=G(r, r, t), and the structure factor S(k, t)
is given by

1
~

1S(k, t) =— dz —gexp[ik [r, (z,0) —r, (z, t)]],
IJ

where N is the total number of vortices.
At low temperatures one has a well-defined vortex lat-

tice and the structure factor is simply the sum of 8
functions reduced by the Debye- Wailer factor
exp( —k uph/2). Then the general result (5) reproduces
the results of Refs. 14 and 17. Note that in a vortex
solid the structure factor S(k, t) is finite and ceases to
depend on time for t&) rph. The response function de-
cays like G(0, t) ~t t . Then the divergence in the in-

tegral at large t is cut off by the sin(k~~vt) factor at
t =1/kv = uph/v [because of the presence of the Debye-
Waller factor exp( —k u„h/2) the main contribution
comes from k

~~

-u pj ]. The ratio bv/v grows as v

for v 0; therefore at any temperature the condition
bv/v =1 can be satisfied and the critical current does ex-
ist. The cutoff time characterizing pinning ls tp, „=uph/
v, . The existence of the critical current implies that dis-
order, however weak, is relevant at any temperature and
the vortex solid is in the vortex-glass state. [We would
like to stress once again that if the pinning barriers U(j)
for vortex motion remain limited for any current
U(j) &Uo, then at temperatures T&UO pinning be-
comes irrelevant. ]

In the liquid state S(k, t) =S(k) for small times,
where ku(t) «1. Here u (t)—=([r(0) —r(t)l ) and the
static structure factor S(k) a:k, 8) 1, for small k. '

For large times where ku (t) )& 1, S(k, t) drops rapidly to
zero. The cutoff time in the integral (5) follows then
from the condition ku(t) —l.

The fluctuation dissipation theorem enables us to re-
late u(t) to the response function G(0, t):

u (t) =T ~ de ImG(co)
( I coscot)—

Z 07

We take the response function in the form G(r) =Go
x0(r)(r/rph)', '" where Go is some constant. If P
(0, short times t Tph aIe relevant, corresponding to

the case of a vortex solid: u- uph. For the vortex
liquid P &0 and u(t) diverges at large t: u (t) = uph
x (t/rp() at t & rp[. This result incidentally defines rp~.

u (rp] ) u ph.

Consider the behavior of the ratio bv/v as a function
of v. At large v, bv/v is small. For v & uph/rp~ the main
contribution in (5) comes from t-uph/v & rp~. In this
case the divergence in u(t) is irrelevant and the ratio
bv/v grows with decreasing v similarly to the case of a
vortex solid. For v & uph/rp~ the divergence of u(t)
should be taken into account. Performing the integra-
tion over k in (5) with a cutoff at k, ,=u (t), using
S(k) cLk and the above expressions for G(t) and u(t),
one finds that for P & 1/(2+8/2) the integral over t con-
verges and the main contribution comes from t = rp]. In
this case the ratio bv/v saturates with decreasing v and
for pinning weak enough lim, , Obv/v«1 (we specify
the exact criterion below). The critical current does not
exist and the vortex liquid is unpinned. If the disorder is

not so weak and rp~ is large, the ratio Bv/v becomes as
large as unity in the region v & uph/rp~. In this case the
vortex liquid is pinned and j, is determined from

bv(v, ) =v„analogously to the case of the vortex solid.
The crossover between the pinned and unpinned regimes
takes place when rp~=rp, „=uph/v„. In a pinned state
Tp (( Tp]. Tp grows with temperature, whereas ipI drops
exponentially and thus the increase of temperature gives
rise to a crossover from a pinned to an unpinned vortex
liquid.

If P ( 1/(2+8/2) then the integral over t diverges, the
ratio bv/v grows unlimitedly with decreasing v, and the
system is in a pinned state. For a single vortex S(k) =1
(8=0) and P= —'. This is the marginal case and bv/v

gro~s logarithmically. As a result, the critical current
drops exponentially with increasing temperature. ' It
can be shown that for the vortex liquid with zero shear
modulus but nonzero constant tilt modulus, P = -' as in

the case of a single vortex, but 6= l. ' The condition

P & I/(2+8/2) is satisfied and at large enough tempera-
tures the vortex liquid becomes unpinned. The diferent
behavior of a single vortex and of a vortex liquid is due
to the different structure factors.

The diAerence between the behavior of the vortex lat-
tice and single vortex, on the one hand, and of the vortex
liquid, on the other hand, can be understood in terms of
the symmetry properties. In the cases of a single vortex
and a vortex lattice the continuous two-dimensional
translational symmetry breaks down, giving rise to pin-

ning and a glass-state formation when turning on the
random potential.

Since the vortex liquid becomes unpinned at large
enough temperatures, one concludes that the pinning
barriers remain limited at all currents. This implies that
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the vortex motion in the liquid state is thermally assisted
flux flow. ' The characteristic time which controls the
motion in the liquid state is r~i=r~hexp(U~i/T); there-
fore the activation barriers can be identified as Up~.

The resistivity in the TAFF regime has the form

p =poexp( —U~i/T) On. e can estimate the preexponen-
tial factor by making use of the fact that the crossover to
flux-flow resistivity pq, „=p„H/H, 2 takes place when

exp(U, i/T) &pin/&ph & ph/t'c rph

and thus

ij2
Jo g T

po psow . (T)

As we have already pointed out, the weakness of the pin-

ning gives rise to the condition ip' » Tph and consequent-
ly po»pa, , which is consistent with the experimental
findings

In conclusion, we have developed the theory of pinning
of a vortex liquid by weak disorder. We have established
that there exist two difl'erent regimes of dissipative
motion of the very viscous liquid. Above the crossover
temperature TI, the vortex liquid is unpinned leading to
flux flow. Below Tk the vortex liquid is in the pinned
state and its motion is governed by the TAFF mecha-
nism for Tg & T & TI, . The activation barriers Up) for
this TAFF can be associated with the plastic motion of
the vortices. These barriers do not depend on the pin-

ning potential and are given by formula (I ). At the
crossover temperature TI„U~i(Tq ) && TI, . The most
probable origin of the large viscosity of the vortex liquid
is the entanglement of the vortices.
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