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Motion of a Bloch Domain Wall
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We study the velocity versus applied-field relation of a moving Bloch domain wall, using the "collec-
tive coordinate" method employed in the theory of soliton motion. For a sufficiently large field, the wall
emits spin waves, thereby self-limiting its velocity. That velocity is equal to the common value of the
phase and group velocities of a particular spin wave, and may be above or below the Walker limit V+,
depending on the intrinsic damping.

PACS numbers: 75.60.Ch, 03.50.Kk

A stationary ferromagnetic domain wall represents a
delicate balance of (crystalline or shape) anisotropy
torque and exchange torque. An applied magnetic field

upsets this balance, forcing the wall to move. The theory
of this motion has long been a subject of study. Over
thirty years ago, Walker ' wrote down an exact solution
for the motion of the simplest planar domain wall, in a
material with uniaxial anisotropy, taking into account a
phenomenological damping rate. According to that solu-

tion, the velocity of the wall varies like the ratio of the
applied field to the damping rate, up to a certain max-
imum field, the so-called Walker limit (WL). Beyond
that limit the solution breaks down.

Of the many nonlinear aspects of this problem, here
we concentrate on one: the eff'ect of the interaction of
spin waves with the forward motion on the velocity ver-
sus field relation. Experimentally, a variety of these
velocity-field relations are observed. ' In some, the
curve continues to rise with field, but changes slope (or
even undergoes a discontinuous jump) at a certain criti-
cal field, possibly the WL. In others it saturates at a cer-
tain critical velocity and rises no further. We appear to
have found a plausible reason for the latter result.

The stationary wall will support spin-wave excita-
tions. ' First, consider only the dependence of these
modes on the coordinate normal to the wall. There is

one mode, of zero excitation energy, that is bound to the
wall. All others have plane-wave character remote from
the wall, but are distorted in the vicinity of the wall,
which acts as a reflectionless taper. The excitation ener-

gy of these modes has a finite minimum at wave number
k =0, and rises, initially quadratically, with k.

Suppose the wall moves with velocity v. An observer
moving with the wall will note frequencies Al, + vk of
spin waves propagating with wave numbers + k with

and against him, respectively. Here Op is the frequency
of the wave at v =0. Consider the upper case. If the
equation A~ =vk has a solution, the apparent frequency
goes to zero, and the wave goes unstable. The smallest k
for which this can happen is such that dQk/dk =v, so
that the group and phase velocities of the wave then
equal the wall velocity. Because of the finite energy gap,
this equation has a root only for a certain minimum

2

BB +. 20 8&
' 2

—K„cos 0

+2trM sin Bcos p
—HMcosB 'dx.

Here J is the exchange constant times a lattice spacing,
EC„ is the anisotropy energy per unit volume. The third
term is the demagnetizing energy, M is the saturation
value of magnetization, and y is the gyromagnetic ratio.
To allow for intrinsic losses, Eqs. (1) are supplemented

by —a BE/8& and —a BF/88, respectively, where a is a

value of v. At that point, energy can be transferred from
the motion of the wall to the spin wave. A further in-

crease in v would result in more energy transfer and
hence a further increase in damping of the wall motion.
Thus v sticks at this critical value, in spite of further in-

creases in the magnetic field H. This state represents a
new fixed point, which presumably remains stable until a
further instability threshold is reached. In addition,
there is also a time-independent shift in each spin wave

proportional to v, amounting to a wall distortion.
Our analysis is based on the method of "collective

coordinates. "' Since the position of the wall center is ar-
bitrary, there must be a zero-frequency mode, precluding
a direct perturbation treatment of the coupling of the
wall to its small excitations. For this reason, the two
conjugate variables of the zero-frequency mode are re-
placed by the position X of the wall, and an effective
"momentum" P. The wave functions of the remaining
small excitations are then measured relative to X, and
their eA'ect is then more accessible to perturbation
theory The u.ltimate objective is to find an equation of
motion for X.

With B(x,t) and 4(x, t) denoting the polar angles of
the magnetization vector at time t and position x, the
Landau-Lifshitz equations can be written in Hamiltoni-
an form,
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where + =cos0, and the momentum" H is the polar an-

gle p. The energy is
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damping rate. However, and because of prior practice,
we shall equivalently supplement Eqs. (1) by Gilbert
damping, a(1 —+ )II and [a/(1 —%' )]+, respectively.
For a =0, these equations of motion are also the Euler-
Lagrange equations minimizing the action 2 =Iddt dx
x (II+ E).—The shape of the stationary Bloch domain
wall centered on X is %' =+p(x —X) = —tanh[(x
—X)/4], II=IIp=const=+ —,

'
tr. Here 5 is the width

JJ/K„of the wall. Consider first the stationary wall.
The expressions for the spin waves are usually stated in

terms of the small deviations of the Cartesian magneti-
zation components from their unperturbed values.
Here we need to restate them in terms of deviations from
the unperturbed %'p and Iip. The result is

tion integral. Then X and its quasiconjugate (Iip+p),
along with the spin-wave amplitudes, are allowed to vary
with time. We will use reduced units defined by

[x] = j'J/K„, [t] = I/1 M . (4)

For the applied dc magnetic field we write h =HM/K„.
In the expansions of 8+ and BH the spacial depen-

dence is given by

pk (x) Wk (x)/(tpk coshx),

hark (x) = Wk (x) (coshx )/tpk,

where Wk(x) are the same functions as used by Winter
and Thiele:

&+=gakyk(x), 8II=+bkttk(x), (2) wk(x) =e'"(—ik+tanhx) .

(3)
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The zero-frequency eigenmode 1/coshx is excluded. The
where the ak and bk are the amPlitudes, and where rest of the modes have the form given by (g) where the
pk, xk are given in Eqs. (5). For the wall in motion, we appearance of "coshx" is due to the change from rec-
write tangular to polar coordinates; the factor tpk =k +1 is

Po+ 8%', H =Hp+ p +BH, due to the normalization of the Wk(x). ' The frequen-
cies for these modes are Qk =[cpk(tpk+ I/Q)] ', where

which are evaluated at x —X and substituted into the ac- Q =K„/2trM is the well known quality factor. The ac-
tion integral is then seen to be

2p ~ ak bk' 2p bkb —k p~ akak
LZ Jk k+

Q kk' k tpk' Q k tpk Q kk ktpk'

+ Z, + g ik k+h„dx%'p(x —x(t))p ak 4p akbk'

2Q k cosh —,
'
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From (7) we can derive the following equations for p, X, ak, and bk ..

1 Jkk d
p =h+ —Z (akbk ),

2 kk' NkCOk' dt

(7)
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p k bk' 4p bk' p
bk = tpkak +, Xg Jk' —k + g Ik' —k g Gk' —k,

2Qcosh 2 hark k' k' '

Q k' k' '
Q

with overlap integrals (see, for example, Ref. 11)

Jk k 2Zlktpk B(k +k )
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cosh 2x

2 E
k +k sinh —, n(k'+k)

All the terms on the right-hand sides of (10) and (11) can be treated as perturbations except the two that are syn-
chronous at frequency Qk (at constant X). Because of their secular behavior, they must be treated nonperturbatively,
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and seriously change the natural frequency. The new frequencies are given by
r 2 2

[&k —
4 t' (Qtuk —1)]' + tk 1+2 2 l 2 I/2 , q(k)
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representing the four roots of the corresponding deter-
minant, where

r
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with P(l/k) the principal value function of 1/k. The kt
term on the right-hand side of (15) is simply the
"moving-frame" eA'ect discussed at the beginning. The
terms tq(k)/tok and tk/trrok are a modification of the
moving-frame effect due to the distortion of the modes
relative to simple plane ~aves. The term involving v

under the radical will be explained in a future publica-
tion.

Equations (8)-(11)show that we have to take into ac-
count the intrinsic damping ao to avoid any unstable
solutions. Gilbert damping can then be added by rewrit-
ing Eqs. (1) as

+ao(1 —q ')ri= )'
men'

n-
M 8%

For example, Eq. (8) becomes, without the spin-wave
term, aot =h, which, when combined with (9), gives
2aop = —Qh. This expression represents the linearized
version of the Walker condition represented by Eq. (Sa)
of Ref. 2.

Note the appearance of a dc term quadratic in p,
namely, p &ok/2Qcosh —,

'
trk, in the equations of motion

for the spin waves. When the part of the action arising
from the demagnetization is expanded, a term linear in

the spin-wave amplitudes arises. This causes a displace-
ment, ak =p /2Qcosh -, trk, of the spin waves, found by
setting ak =bk =0 and keeping only terms quadratic in p.
This results [according to Eqs. (2) and (3)] in a mod-
ification of the wall shape, which can be reexpressed as
the usual wall contradiction (expanded to order p ).

The eAect of the critical spin waves will now be de-
scribed by explicitly evaluating their thermal excitation.
Alternatively, the same result follows from a fixed-point
analysis, without the benefit of thermal agitation, as will

become clear later. However, the use of a thermal field

helps in visualizing the manner in which fixed points are
attained.

Keeping just the secular terms in the equations for
the spin-wave amplitudes, we use the substitutions al,
=Ape'"'+2*—j, e

'"' and bI, =BI,e'"'+B—I, e '"', and
allow these waves to be driven by the thermal fields
whose Fourier components in k-0 space are hk" (II ). At
0 =0, the amplitudes become

~k =f(k )hk "/~k, ~k = g(k )hk "/~k, —

x nk —,. k+ +q (k)
EN' NIf

The two functions f(k) and g(k) are irrelevant for the
discussions of the consequences of Eqs. (17) on the wall

velocity.
From Eqs. (8), (9), and (14) we can write an equation

for L as follows:

X+ (2/Q) (a,+~)X= (2/Q) h,

with A. equal to the time average of

—Qg (bkb k
—

—, a kak),
1 1

2 k Cuk dt

which comes from the quadratic contribution of the spin
waves to the dipolar demagnetizing energy; thus the ter-
minal velocity is X=h/(ao+k), or

+g 3Qk+ I Re[f(k)g (k)]
k 2 k

(19)

Vmax

FIG. 1. Plot of the left-hand side of Eq. (19) (represented
by the diagonal line), and of the right-hand side for diAerent
values of ao. The solution to Eq. (19) is given by the intersec-
tion of those curves with the diagonal line. The abscissa of
the dashed vertical line is V „=01,/[k(1+I/neo&) ~q(k)/
cuk]~„,„. In the approximation V ., =min(Qklk), we have
V,, =(V„./2')(I +JI+ I/g ), in excellent agreement with the
case of Gd03Y?7F3976a]0301$ reported in Ref. 4, Fig. 1 and
Table I.
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Note that ht,'-" satisfies (ht,'"/ao) —kttT/h Qj,', with III,'
= yMQI, .

Equation (19) for t can be solved graphically (see Fig.
I). For small fields, the expression for the velocity is still

given by a Walker-type relation t =h/ao, until it reaches
values within ht,

'" /k Qt of the smaller of

k q(k) grot; —I

ZNg NI, 4

at which point the excitation becomes large and temper-
ature independent. The velocity "sticks" close to the
value at which the right-hand side of (19) goes to zero.

That saturation velocity can also be obtained from a
fixed-point analysis by equating all time derivatives and
thermal fields to zero.

Thus we conclude that the velocity of a moving Bloch
domain wall should reach a limiting value, corresponding
to a new "fixed point" of the system. Physically this is

due to power being diverted from the forward motion by
amplification of thermal spin waves to large nonthermal
values (and by spontaneous emission of these waves, but

normally T is not low enough for this quantum effect to
be comparable). It is possible that upon further in-

creases in dc driving field, the new fixed point goes un-

stable, and yet another state is reached, perhaps corre-
sponding to a limit cycle. These questions are currently
being examined.

These results are not substantially changed when prop-
agation perpendicular to the x direction is included. The
synchronicity condition Qk =tk is then replaced by a

vanishing of the energy gap between the spin-wave spec-
trum and the band of modes clinging to the wall, i.e., lo-

calized in x.
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