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Evidence for weak-localization corrections to the electronic thermal conductivity of a quasi-two-
dimensional electron system is reported for the first time. The validity of the Wiedemann-Franz relation
theoretically predicted for such disordered systems is also experimentally verified.
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During the last decade, both experimental and
theoretical investigations of the low-temperature electri-
cal resistivity of weakly disordered electronic systems
have led to quantum corrections to the Boltzmann for-
mulation of electronic transport. It was found that these
corrections become increasingly important as the amount
of disorder increases, while the magnitude as well as the
temperature dependence of the effect depend strongly on
the dimensionality of the system. In fact, the corrections
are larger in systems of lower dimensionality. For the
particular case of quasi-two-dimensional (2D) systems,
the resistivity increases logarithmically with decreasing
temperature in the absence of spin-dependent processes.
This nonclassical aspect of the carrier transport was
theoretically interpreted in terms of two distinct quan-
tum mechanisms: weak localization' and electron-
electron interaction.? Soon after, expressions demon-
strating the high sensitivity of weak localization to an
external magnetic field were derived.?

Weak-localization and electron-electron-interaction
effects in the 2D regime were initially observed experi-
mentally in thin metal films,* electron inversion layers,5
and semiconductor heterostructures.® The various as-
pects of the effect of disorder on the electron transport
for different systems have been the object of recent
comprehensive review papers.’ In the last few years,
such effects were evidenced in another important group
of quasi-2D systems: bulk layered materials.®"' These
materials exhibit highly anisotropic electronic transport
properties. It was recently demonstrated that quasi-2D
electron systems formed in low-stage acceptor graphite
intercalation compounds®~'" (GICs) and in pregraphitic
carbons'*'3 are choice candidates to investigate dis-
order-induced quantum corrections to the electron trans-
port.

Up to now, most experimental investigations on quasi-
2D systems concerned the corrections to the electrical
resistivity or to the Hall constant. As regards thermal
transport, it was only very recently that theoretical esti-
mates for the weak-localization and interaction correc-
tions to the thermopower'#"'® and for the electronic
thermal conductivity'”'® for disordered systems were

made. It was predicted that there were no quantum
corrections to the Wiedemann-Franz law,

ke =L¢To, 1)

whatever the importance of the disorder, so that the elec-
tronic thermal conductivity kg should scale as the elec-
trical conductivity at low temperature.'”'® In relation
(1), Ly=2.45%x10 "8 VZK "2 is the free-electron Lorenz
number and o the electrical conductivity.

Generally speaking, the measured thermal conductivi-
ty k is the sum of two contributions:

Kk=kg+kg, )

where «; is the lattice thermal conductivity.

Experimentally, the observation of the effects of locali-
zation and interaction on the electronic thermal conduc-
tivity of quasi-2D electron systems is a real challenge
and has not been reported until now. Indeed, for semi-
conductor heterostructures heat conduction is expected
to be dominanted by the lattice contribution x,. For dis-
ordered thin metal films, since there are no experimental
data available, it is difficult to predict which of the two
contributions, lattice or electronic, dominates. In any
case, from the experimental side, whatever the intrinsic
mechanism for heat conduction, the lattice contribution
from the substrate of the thin films should thermally
short circuit the sample. Thus, measurements of kg are
prohibitively difficult to perform on these systems con-
sisting of thin films.

On the other hand, layered materials could allow such
extremely delicate experimental observations under
favorable circumstances. Partially graphitic carbons are
good candidates in this context. In these materials a
mixture of two phases coexist. The first consists of well-
stacked graphene planes in the ABAB... sequence
characteristic of crystalline graphite with an interlayer
spacing of 3.35 A, while the second consists of randomly
stacked graphene planes typical of a turbostratic struc-
ture.'? In the latter case, the interlayer spacing is higher
(3.44 A) and the graphene planes in which conduction
takes place are nearly uncorrelated. In recent works,'>!3
it was clearly shown that 2D weak localization occurs in
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these materials and that the turbostratic phase is respon-
sible for the 2D behavior as far as weak localization is
concerned. Increasing the heat-treatment temperature
of a partially graphitic sample above 2200 °C leads to a
2D-3D crossover due to a growing of the graphitic re-
gions at the expense of the turbostratic regions.'’ In
parallel, it is observed that the positive electrical magne-
toconductance, which is about 20% in the liquid-helium
range around 5 T for a nearly entirely turbostratic sam-
ple, progressively vanishes with increasing graphitic 3D
ordering.'> Magnetoconductance data have been con-
vincingly interpreted in the framework of the weak-
localization theory in the 2D regime over a wide range of
temperature and magnetic field.'?

Concerning heat transport, conduction in these materi-
als is mainly governed by the lattice contribution which
shows a steep temperature variation at low temperature.
Consequently, it is almost impossible to observe directly
the quantum correction to the thermal dependence of the
electronic thermal conductivity. So, reliable information
should come essentially from the transverse-magnetic-
field dependence of the thermal conductivity at a given
temperature, since the lattice thermal conductivity is not
influenced by the external magnetic field.

Thermal conductivity measurements were performed
using a static heat and sink four-probe method. Temper-
ature gradients across the sample were generated by cir-
culating an electrical current in a 10-kQ metal-film
resistance glued to a copper block in good thermal con-
tact with the sample. At its other end, the sample was
thermally bonded to the heat sink using GE 7031 var-
nish. The temperature gradient across the sample was
measured using two carbon-glass resistors carefully
matched to the sample by means of the GE varnish, al-
lowing the determination of T'coq and Ty, the tempera-
tures of the cold and hot regions of the sample, respec-
tively. The temperature of the heat sink was measured
by means of a third carbon-glass resistor. The thermom-
eters were first carefully calibrated in several separate
runs to check their reproducibility upon cycling. The
power dissipated in each carbon-glass sensor was limited
to 10 ™° W in order to avoid self-heating. In order to
limit the heat losses by conduction through the electrical
leads to less than 1%, 60-um-diam Constantan wires
were used to provide electrical connections to the heater
and to the temperature sensors. At 3 K, the thermal
conductance of the sample was found to be around
15%x10 "% W/K. Electrical contacts to the sample for
electrical conductivity and electrical magnetoconduc-
tance measurements were insured by means of Chromel
wires and silver paste. The various voltages were mea-
sured using a Keithley K181 nanovoltmeter with a reso-
lution of about 10 "8 V.

As already pointed out by Sample, Brandt, and Ru-
bin,?® we found a rather complicated magnetoresistance
behavior for the carbon-glass sensors. Indeed, we ob-
tained positive magnetoresistance values for 7> 2 K and
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negative values at lower temperature. Typically, at 4.2
K we obtained a magnetoresistance of 2.5% at 4 T,
which corresponds to an apparent change in temperature
of 3x10 2 K.

We determined the effect of a transverse magnetic
field on the thermal conductivity of the sample in the fol-
lowing way. By pumping on the helium bath, the sample
holder reached the desired temperature with a thermal
stability of nearly 10 ™° K. Then, we energized the
heater to obtain a temperature gradient of about 0.5 K
on the sample and we measured T and Tcoq at zero
magnetic field and then at various magnetic fields. If
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FIG. 1. (a) Temperature dependence of the measured
thermal conductivity of a pregraphitic carbon sample heat
treated at 1900°C and of the electronic contribution to x
(line) calculated via relation (1). (b) Temperature variation of
the ratio xg/x.
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necessary, small corrections to the current intensity ap-
plied to the heater were made to keep the power un-
changed with increasing magnetic field up to 4 T. In the
next step, we carefully determined the influence of the
magnetic field on the sensors at Ty and Tyg, respec-
tively, for the same temperatures and fields at which
measurements were taken, but with an isothermal sam-
ple, and applied the necessary corrections.

In Fig. 1(a) we present the temperature dependence of
the as-measured total thermal conductivity « in the tem-
perature range 2 <7 <100 K. The sample measured
consisted of nearly fully turbostratic carbon heat treated
at 1900°C with a parallelepipedic geometry of 0.2x5
X 10 mm?>.

In partially graphitic materials heat conduction is
dominated by the lattice contribution from room temper-
ature down to liquid-helium temperature.?' Because of
the extremely high Debye temperature of these materials
(8p=2500 K) and according to the microstructure of
the sample, the lattice thermal conductivity reaches a
maximum around room temperature with very high
values (several hundreds of Wm ~'K ™! according to the
lattice perfection). At 4.2 K, instead, the lattice thermal
conductivity may be smaller than 0. Wm 'K ™!, so
that an observable electronic contribution to heat trans-
port shows up. We see from Fig. 1(a) that, as expect-
ed,?! the lattice thermal conductivity follows a 7" law
with n~2 from ~90 K down to ~8 K. In the liquid-
helium temperature range, there is a departure from the
T? law due to the contribution from the charge carriers.

We have also measured the temperature dependence
of the electrical resistivity p of the sample in the same
run. Then, assuming that the Wiedemann-Franz law
[relation (1)] holds— an assumption that we shall discuss
hereafter— we have calculated the electronic contribu-
tion to the thermal conductivity, kg, from the nearly
temperature-independent electrical conductivity value
(p7'=1200 @ “'cm ™) measured at very low temper-
ature. The calculated temperature dependence of «f is
also reported in Fig. 1(a). In Fig. 1(b) we present the
temperature variation of the ratio xg/x for the same
sample and temperature range as in Fig. 1(a). We see
that the relative magnitude of xr is negligibly small
around 100 K and increases with decreasing temperature
to reach 18% around 3 K.

The electrical magnetoconductance at 4.2 K as a func-
tion of magnetic field up to 4 T is presented in Fig. 2.
Previous works have shown that the electrical magneto-
conductance of samples heat treated below 2200°C is al-
most temperature independent in the liquid-helium tem-
perature range due to the presence of magnetic impuri-
ties in the material.'>!* The electrical magnetoconduc-
tance is positive over the whole magnetic-field range in-
vestigated and is nearly entirely due to the weak-
localization effect. On the other hand, at zero field, the
quantum fraction of the low-temperature electrical resis-
tivity was estimated to be around 30% of the measured

resistivity at low temperature.'>'3 So, by comparing

thermal magnetoconductance data with electrical mag-
netoconductance data, the validity of the Wiedemann-
Franz law for the disorder-induced quantum fraction of
the resistivity may be directly checked. Since the electri-
cal magnetoconductance reaches a value of 18% at 4 T
and the calculated electronic contribution to the total
measured thermal conductivity is also 18% at 3 K, we
should expect a positive thermal magnetoconductance of
a few percent below 4 T at this temperature. To be
measurable, this very small effect requires a very careful
calibration of highly sensitive thermometers, taking into
account their sensitivity to the magnetic field, and the
accurate determination of changes in thermal gradients
of a few 10 =3 K. This justifies the design of the special
sample holder and the procedure described above, which
are crucial for the observation of the effect.

In Fig. 2, we present the first evidence of a positive
thermal magnetoconductance in the form of a field
dependence below 4 T for a mean sample temperature of
2.9 K. Since for moderate magnetic fields the lattice
is field insensitive, the thermal magnetoconductance
should be entirely ascribed to the effect of the field on
the electronic thermal conductivity. Assuming that the
Wiedemann-Franz law [relation (1)] also holds in the
presence of a magnetic field, as is generally the case, we
may calculate the field dependence of the thermal mag-
netoconductance [k(H) —x(0)]1/x(H) -from that of the
electrical magnetoconductance [o(H) —0(0)1/0(H)
which is presented in Fig. 2. The result of this calcula-
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FIG. 2. Transverse-magnetic-field dependence (%) of the
thermal magnetoconductance [x(H) —«x(0)]/x(H) and of the
electrical magnetoconductance [o(H) —a(0)1/o(H) at a tem-
perature of 2.9 K. The open squares are the experimental elec-
trical magnetoconductance data, while the solid circles are the
measured thermal magnetoconductance data. The dashed line
represents the thermal magnetoconductance calculated from
the electrical conductivity results assuming the validity of the
Wiedemann-Franz law (see text).
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tion is represented by the dashed line in Fig. 2. If we
compare the calculated values (dashed line) to the exper-
imental data (solid circles), we find very good agreement
within the experimental error (~0.3%).

The results show quite clearly that the underlying as-
sumption, i.e., the validity of the Wiedemann-Franz law
in the case of a 2D weakly disordered electronic system,
is verified at low temperature. Thus, the quantum
correction to the electronic thermal conductivity due to
weak localization scales exactly as that to the electrical
conductivity. In other words, it is experimentally evi-
denced that the Wiedemann-Franz law, which is always
verified for the classical case in the elastic-scattering re-
gime, applies also for weakly disordered systems, as
theoretically predicted.!”'® Indeed, it is found here that,
within the 10% experimental uncertainty, a value of L
=2.45%x10 "% V2K "% is also obtained for the quantum
correction to the conductivity. To demonstrate this, a
very specific system has to be selected. It was found that
the particular structure of disordered turbostratic car-
bons was a good choice, since it fulfills two essential con-
ditions. It is a bulk material from which large samples
can be cut, thus enabling thermal conductivity measure-
ments to be performed, and it has an almost 2D electron-
ic system presenting marked localization effects. Finally,
as a corollary, we have also presented for the first time
evidence for a positive thermal magnetoconductance in
such systems.
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