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Using lattice sums we show that the dense, monatomic, face-centered, icosahedral quasicrystals can be
stable at zero temperature. We compare the energy to other periodic crystals and find it minimal. We
create phason strain in this lattice, calculate the energy, and show that this lattice is at least locally

stable against such strains. We calculate the two elastic constants associated with this strain. Our cal-
culations indicate that it is also globally stable against phason strains. We argue that it is also stable un-

der elastic strains. We show that the energy as a function of the strain is not described by a simple

quadratic expansion as implied by simple phason elastic theory.

PACS numbers: 61.42.+h, 61.50.Em

The problem of the stability of quasicrystals (QC) was
raised by their discovery. ' The first materials that were
found were probably disordered phases because they
were made by rapid quenching. There were signs of dis-
order in the diffraction spectra and they were metasta-
ble. Later materials with a higher degree of order were
found. There is good evidence that the face-centered
icosahedral phases of A1LiCu, A1CuFe, and A1CuRu
are highly ordered and probably stable.

Landau theories were used to demonstrate that
icosahedral QC may be stable phases. But this approach
is limited to order parameters which have no direct
relevance to the real microscopic structure of the quasi-
crystal. (It is not even clear if discussion of one or two
wave vectors is enough for those phases since obviously
extremely nonstable QC can be described by the same
Fourier expansions with the same dominant vectors and
the parameters of any expansion are not related to mi-

croscopic theory. ) Therefore, models which are related
to the microscopic structure of QC are needed.

Double atomic Penrose lattices have been simulated in
two-dimensional simulations. It was shown that the
Penrose QC is locally stable. It was also shown that
structures which are very close to a Penrose lattice are
reached by cooling a liquid.

In a recent paper, Narasimhan and Jaric used lattice
sums to calculate cohesion energies, but their results de-
pend on a subtle difference between the distances in the
simple-cubic icosahedral lattice and the cubic lattices,
and stable periodic structures with higher cohesion ener-

gy can be found.
In this Letter we use lattice sums to calculate zero-

temperature energies of QC and compare them to other
crystals. We find out that for the monatomic, face-
centered icosahedral (fci) phase one can find a simple
potential with a higher cohesion energy for the QC than
for the other crystals, phason-strained QC's, and other
QC that were compared. This situation holds over a
wide range of potential parameters. This is quite in-

teresting since the A1RuCu crystals are fci phases.
We introduce phason strains and calculate the pair

distribution functions and the cohesion energies of the
strained lattices. We show that the two elastic constants
that define the elastic energy in small strains are positive,
which means that the lattice is at least locally stable
against such strains. It seems to also be stable against
any other larger strains. We discuss the validity of
phason elastic theory and show that it is not fully valid in

our case.
Because of the high similarity between the pair distri-

bution functions of the other monatomic icosahedral
phases and the periodic cubic pair distribution functions,
those QC's can be stabilized only for very small ranges
of the potential parameters. Small distortions of the cu-
bic phases cancel the preference so we do not discuss
those possibilities at all.

We first discuss the icosahedral structures we use in

our analysis. In our discussion we use the projection
method and discuss QC which are projected from a six-
dimensional cubic lattice. All the points within a strip in

perpendicular space (r ) are projected on the physical
space (r'). There are three icosahedral Bravais lattices
in 6D; the simple-cubic (sci), the face-centered (fci), and
the body-centered lattice (bcl).

In Ref. 8 we discussed the dense icosahedral QC's.
We showed that dense icosahedral lattices are derived
from strips which are Voronoy constructions of orthogo-
nal projections of certain lattice vectors. For the sci lat-
tice two such kinds of Voronoy constructions exist. The
first is an icosahedron [defined by projection of 6D vec-
tors of the kind (111000)]. The second strip is a trun-
cated triacontahedron [defined by vectors of the kind
(100000) and (110000)]. For the fci lattice a different
QC is defined by a triacontahedron [defined by (1 —1

0000)]. Their properties and their pair distribution
functions are given in Ref. 8. In Table I we give the pair
distribution functions of the fci dense lattice.

The statistics of the average number of neighbors for a
monatomic QC (pair distribution function) is very easy
to calculate; for a 6D vector R =(r,r ),
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TABLE I. The pair distribution function for a parallel dis-
tance R of the fci nonstrained lattice. We give an example of
the 6D vector associated with the distances.
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where n(r ') is the average number of neighbors at a dis-
tance r, VI is the volume of the intersection between the
original strip and the strip moved by r, and N, is the
number of icosahedral vectors with the same length.

The cohesion energy is easily calculated, for periodic
and nonperiodic crystals,

E —
2 gn(r ')V(r ') (2)

V

[for the periodic lattices n(r") is simply the number of
neighbors].

Our choice for the parameters of the potential is guid-
ed by the difference between the pair distribution func-
tions of the periodic crystals and the dense QC's. It is

very hard to stabilize the sci structures because their
pair-distribution-function distances are very close to the
pair distribution functions of the cubic phases. However,
for the fci structure the pair distribution function is very
different. As can be seen in Table I almost no atoms can
be found between the minimal distance Ro and 1.61RO
(only an average number of 2.2 atoms). This enables us

to construct a potential which can stabilize the dense fci
QC. This potential is defined in Fig. l. Using this de-

finition we make the following choice and compare our
icosahedral QC to periodic ones, the sc, bcc, fcc and hcp
lattices.

We define

b/a & 1.1, c/a =1.5, 1.618 & d/a & 1.7. (3)

We analyzed the problem over the range of the parame-
ters a Vl/Vo, P V2/Vo. We display the results in Fig.
2. The cohesion energy is quite high; for a =0.5, P =0.5,
the cohesion energy for the fci dense phase is 6.26Vo.
For the periodic crystals we get the following: For the sc
phase the energy is 0.0, for the fcc it is 4.5VO, and for
the bcc it is 5.5Vo. The cohesion energy is also lower for
other periodic crystals we checked (hcp, rhombohedral
and hexagonal for all choices of length ratios, diamond,
and others). We have not included them in Fig. 2 be-
cause they are stable, if stable, only at extreme choices
of the parameters.

It is not satisfactory to compare the energy only to
those periodic crystals. Obviously, we cannot compare
energy with all periodic structures, but we can compare
with the most relevant structures, which are the
icosahedral lattices of this type with imposed phason
strain. It is clear that for small strains the pair distribu-
tion functions of the strained lattices will be very close to
those of the nonstrained one. Therefore, the energy will

also be close and will change continuously as a function
of the phason strain. Furthermore, one might naively as-
sume that introduction of strain will introduce into the
lattice a new local environment that will make the cohe-
sion energy higher. Therefore, we construct the strained
lattices and calculate the pair distribution functions and
the energies.

The phason strain is described by a stress tensor T'i

(in the parallel direction i a strain in the orthogonal
direction j is introduced). Those types of lattices can be
either periodic or nonperiodic. For small strains it is pos-
sible to write the difference in energy using an elastic
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FIG. l. The potential V(r) is defined by the four distances
a, b, c, and d and by the voltages Vo, VI, and V2.. for r (a,
V ~; for b & r & a, V —Vp+ (Vl+ Vp)(x a)/(b —a); for-
e ) r )b, V VI,. for c (r (d, V- —V2, for d & 0, V-O.
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FIG. 2. A phase diagram as a function of the parameters
a Vi/Vp and P V2/Vp of the potential given in Fig. 1. The
icosahedral phase is stable over a wide range of possibilities.
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expansion:

One should notice the following remarks:
(1) Since introduction of phason strains introduces

points into the lattice and takes others out the lattice, the
expansion (4) is not fully defined. We are not discussing
small shifts in the coordinates of the atoms, but shifts in

the phason coordinate; therefore, one should define ex-

actly how the transformation is done. The usual way of
defining the lattice is to keep the strip (or the atomic sur-

face) the same; however, in our case such a choice will

not be satisfactory because it will result in the appear-
ance of smaller distances in the lattice than allowed by
our hard-core potential. Our way of defining the new

lattice will be to find the icosahedral dense lattice under
a certain phason strain. We will find that the lattice be-
comes less dense when phason strained but we still use
this expansion since we want to compare the energy.
Unlike the case of elastic expansions, we cannot trans-
form one lattice to the other at all even with large
translations of atoms.

(2) If the change in the phason strain is done continu-

ously, all the average parameters of the lattice will

change continuously. Therefore, it is reasonable to do a
Fourier expansion of the energy. There is no general ar-
gument that the quadratic expansion (4) is a good
description of the energy. We found out that it is not a

good approximation even for small strains in the direc-
tion T'' though the energy is minimal for zero strain, so

Eq. (4) is not generally valid, but we still use it to
demonstrate stability.

It is well known that there are only two independent
elastic constants associated with phason strain in (4)
(there are five elastic constants for the full elastic expan-
sion ). If we introduce strains in two independent direc-
tions associated with those elastic constants, we can cal-
culate the pair distribution functions, use them to calcu-
late the energy, and measure those constants. As our set
of coordinates we choose a set of the twofold axes of one
of the tetrahedral subsets of the icosahedral group in

parallel and orthogonal space. We give the same index
in orthogonal and parallel space to directions associated
with the same twofold operation. It is very easy to check
that the elastic constants X~ 1 ~ ~ and X, ~2~2 are independent.
We use those directions in calculating the energy.

We construct those lattices as we did in Ref. 8. We
define the minimal distance, identify the vectors whose

projection is smaller than a certain minimal distance,
and then perform a Voronoy construction in orthogonal
space to define the strip. The densest fci QC's are pro-
jected by convex strips and this is also the case for the
strained ones, so this construction gives in this case the
most dense lattices. The phason strain breaks the sym-

metry of the orthogonal vectors and therefore changes
the size and the shape of the strip. Therefore, the pair
distribution functions are different. We note that we still

project on the original physical lattice; otherwise the
cohesion energy would be lower because of a change of
lattice distances.

Using this method we calculated the cohesion energies
for the strained lattices. We calculated the volumes of
the overlaps of strips according to Eq. (1) numerically
for a set of values of phason strains (using 3.5x10 ran-
domly distributed points). We found the nonstrained
lattice to be the most stable one. We give an example of
the results for the strain T' and for the parameters
a 0.5, P=0.5 in Fig. 3. We find that the two elastic
constants are positive. We calculated them fitting the
lowest points with (4). Their values are
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FIG. 3. The energy as a function of the strain T".
2561

(1 ~ 5 0.35)VQ Xi2[2 (1.2+'0.2)Vp.

The energy is at least a local minimum as a function
of the strain as can be seen in Fig. 3 (with an accuracy
of 0.01). The quadratic expansion is a good approxima-
tion for the second elastic constant and poor for the first
since the energy is not symmetric under change of sign
of the strain T". For the higher strains the cohesion en-

ergies are still higher. In other checks we made in other
general directions the same situation exists. The energy
seems to also be a global maximum though we cannot
prove it in a general way.

Those results are also valid for the periodic crystals
which can be defined as a projection from six-dimen-
sional space because the parameters of each such crystal
are as close as we wish to an incommensurate crystal
which is defined close to it. Therefore, those calculations
also give results for periodic crystals. As a further check
we also calculated the energies of the rational approxi-
mations of the icosahedral crystal (where r is appro»-
mated by rational numbers), the energy of those crystals
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is smaller but quite close (for r = —', the energy is 6.21;
for —,', it is 6.22).

If we also introduce pressure, the lattice will be even
further stabilized since we find that the density is maxi-
mal for the nonstrained QC. So, an introduction of
phason strain will define a larger volume for the QC, and
therefore additional mechanical energy will be added to
stabilize the nonstrained lattice.

From those results it is also clear that long-wavelength
fluctuations in the strain will also lower the cohesion en-

ergy. The basic disorder in the lattice will probably be
related to those fluctuations since at short distances it is

impossible to distinguish between different small strains.
Two short-range neighbors are enough to fix the stable

position of a lattice point because of the form of the po-
tential we defined. The dense fci lattice with this poten-
tial has a stable backbone of more than 95% of the
points, which have more than one neighbor and therefore
are fixed in space. Consequently, we expect that the lat-
tice will also be stable under elastic distortions.

We have shown in this Letter that it is possible to
define a potential that will stabilize an icosahedral lattice
relative to other periodic crystals. We also show that the
cohesion energy of this lattice is at least a local
minimum and probably also a global maximum as a
function of the strain. In doing so, we show for the first
time how to calculate those elastic constants and dis-
cussed the validity of the phason elastic expansion.

We should note that the arguments we presented here
do not fully prove that the structure we discussed is the
most stable lattice. We have not checked, and it is im-
possible to check, all the possible lattices. We are sure
that the reason for the stability of two and three atomic
QC is related to the properties of two atomic potentials
and two atomic icosahedral packings but this will be dis-

cussed elsewhere. But still our arguments are meaning-
ful and we think they provide a very interesting intuition

on how real QC might be stabilized. The unique proper-
ties of the pair distribution functions and properties of
the dense QC's might be responsible for their stability.
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