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Aharonov-Bohm-Type Eff'ect for Vortices in Josephson-Junction Arrays
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The dynamics of a single vortex present in a ring-shaped (Corbino geometry) two-dimensional array
of low-capacity Josephson junctions is studied. The vortex is treated as a macroscopic quantum particle,
whose energy levels E,(go) are periodic functions of the externally induced gauge charge go which is

enclosed by the vortex, with a period 2e. This Aharonov-Bohm-type effect may manifest itself as a per-
sistent voltage V, dEO(go)/dgo between interior and exterior contacts, or alternatively as Bloch oscil-
lations. The relation with the Aharonov-Casher effect and the possibility for experimental observation
are discussed.

PACS numbers: 74.50.+r, 66.90.+r, 74.90.+n

The Aharonov-Bohm (AB) effect' has important im-

plications for the motion of an electron in an electromag-
netic field. The energy levels E„(4)of an electron in an
isolated ring are periodic functions of the magnetic
gauge flux 4 which is enclosed by the ring, with a period
given by the flux quantum h/e. Because the circulat-
ing current in the ground state is given by I(4)

dEp(4)/d4, this has the interesting consequence that
a persistent current may flow in this system, which de-
pends periodically on @.

In this paper I discuss the possibility for an AB-type
effect for a macroscopic particle. The particle is a vortex
present in a ring-shaped (Corbino geometry) two-di-
mensional array of low-capacity Josephson junctions. It
is predicted that under certain conditions the energy lev-

els E„(Qp) of the vortex depend periodically on the in-

duced gauge charge Qp which is enclosed by the vortex,
with a period 2e. This AB-type effect manifests itself as
a persistent voltage V, =dEp(Qp)/dQp, which may be
detected between interior and exterior contacts of the ar-

ray, or alternatively as Bloch oscillations with period 2e,
when the array is driven with an external current
I=dQp/dt

Aharonov and Casher (AC) have introduced an AB-
type eff'ect for a neutral particle with a magnetic mo-
ment which moves around a line charge. In a recent pa-
per this AC efl'ect was discussed for a fluxon inside a
superconductor, which moves around a charge. Al-
though there are clear similarities between this system
and the system discussed in this Letter, there are also
important differences. The AC effect arises from the
electromagnetic interaction between a particle with a
magnetic moment (e.g. , a fluxon in a superconductor
which carries a magnetic flux h/2e) and a charge. In
contrast, the vortex in the system discussed in this Letter
does not carry magnetic flux. Also the AC effect occurs
in "real" space, whereas the AB-type effect described in

this Letter occurs in an artificial two-dimensional space,
formed by superconducting islands coupled by Josephson
junctions and capacitors.

Figure 1(a) shows the layout of the system. The two-

dimensional array consists of NxM superconducting is-
lands, each coupled to its four neighbors by both Joseph-
son tunnel junctions and capacitors C [see also Fig.
1(b)l. The array is enclosed by superconducting boun-
daries 1 and 2 on both outside and inside, which also
serve as electrical contacts. A charge Qp can be induced
on the interior contact 2 by means of a capacitor Cp,
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FIG. I. (a) Schematic layout of the system. The two-
dimensional array is enclosed by the superconducting boun-
daries l and 2. A gauge charge Qo can be induced on bound-
ary 1 by means of a voltage source Vp and capacitor Cp. The
response of the system is measured by the voltage V. (b) Phase
configuration of a vortex located in the center of the array.
The Josephson junctions and capacitors which connect adja-
cent islands are not shown. The vector potential A=Bxy.
The array is periodic in the y direction, the last column of is-
lands borders on the first column.
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which is connected to a voltage source Vo. This tech-
nique was introduced to study the quantum dynamics of
single junctions. It was argued that when Co((C, the
charge Qp can be treated as a classical variable, and acts
as a gauge charge.

At zero temperature the dynamics of the array is

determined by the ratio of the charging energy constant
E, =e /2C and the Josephson coupling constant EJ
=A, I,/2e, with I„ the critical current of the junctions. I
am interested in the regime where E, is sufficiently large,
but does not yet dominate the dynamics of the array. I
choose E, =0.5EJ. The degrees of freedom of the array
are the phases p„,. of each island, together with the
phase p of the interior contact (the phase of the exterior
contact is set equal to zero). The dynamics of the array
is determined by the condition of current conservation
for each island. There are two types of solutions. The
first category is formed by vortex-type solutions, for
which the net Josephson current flowing to each island is
zero [a vortex is illustrated in Fig. 1(b)]. The second

type of solutions can be illustrated by defining the phase
differences

+x,y 44x, & Px+ I,p Ct'x —l,y 4x,p + I 4x,y
—

l ~

By linearizing the Josephson current-phase relation, the
following difl'erential equations are obtained:

/dt

with the Josephson frequency col =(2eI,/ItC) ' . Equa-
tion (1) shows that the second type of solutions can be
described by a set of harmonic oscillators.

In order to introduce a single vortex into the system, a
perpendicular magnetic field is applied, which corre-
sponds to a flux quantum @p=h/2e through the area of
the array. The system now minimizes its Josephson en-

ergy by introducing one vortex in the array [see Fig.
1(b)]. The vortex is confined in a potential well, which
consists of a superposition of an approximately parabolic
potential well' E=0.2EJ(x —xp) (xp is the center of
the array, and the distance between islands is put equal
to unity), and a periodic potential with amplitude
0.07EJ, which is associated with the crossing of the vor-
tex from one cell to the next one. '' Apart from its po-
tential energy, the vortex can also have kinetic energy
Ek;„= —,

'
m, , v, which is due to the charging energy asso-

ciated with a moving vortex (the major contribution is

from the junctions inside or near the vortex core). The
mass of the vortex can be estimated' I,, =0.12h C/e .

The voltage V across the array is approximately the
sum of two parts: the voltage due to the dynamics of the
array without a vortex plus the voltage due to the motion
of the vortex alone. In the remainder of the paper I will

ignore the first contribution ' and focus on the motion of
the vortex, which gives rise to the AB-type eAect. I will

now assume that this motion can be described in terms of
the vortex coordinates (position and velocity of the vor-

(2)

The vortex Hamiltonian is now given by

+E„(x,y),
(p+epAg) 2

2@it

with p (=p„,pJ) the canonical momentum of the vortex.
The potential energy Ep(x,y) describes the spatial
dependence of the Josephson energy of the vortex. It
contains the parabolic confinement potential and the
periodic potential. It may also contain a random contri-
bution due to disorder in EJ for the individual junctions,
which cannot be avoided in fabricated systems.

I now briefly discuss the physical meaning of the
charge vector potential. The energy levels of a single
junction are periodic functions of the induced charge Qp,
with a period 2e. Similarly it can be shown' that the
energy levels of an array of coupled Josephson junctions

tex core) alone. ' The oscillation frequency of the vortex
in the potential well is then approximately given by

'

tpv= (0.4EJ/m, , )' =0 2tp. j, and quantized energy lev-

els E„=(n+ —)htpv are expected. Although the as-

sumption of a one-dimensional system is not essential for
the final result, I assume for the remainder of the paper
that the motion of the vortex in the x direction is

confined to its ground state.
In one revolution of the vortex around the array, the

phase difl'erence p between the array boundaries in-
creases with 2z. From this, one obtains a relation be-
tween the vortex velocity v in the y direction and the rate
of change of p: dp/dt =2trt. /L, with L the circumference
of the array. ' The power supplied by the external
current source is given by P=IV=Ft. , with F the force
on the vortex, and V the voltage across the array. With
the Josephson relation V=(h/2e)dp/dt, one obtains the
known result for the force on the vortex F =4pjxn, with

j =I/L the sheet current density, and n the unit vector
normal to the array.

The ring geometry implies that the vortex coordinates

y and y+L are identical. This means that the force on

the vortex cannot be written as the gradient of a scalar
potential F= —V@(r), since the line integral along the
circumference of the array fV@(r) =0. The situation is
similar to that of an electron on a ring, driven by a
time-dependent gauge flux. The force on the electron is

given by Faraday's law: F= —eE= —edA/dt, with A
the magnetic vector potential. To describe the force on
the vortex I therefore introduce a charge vector potential

Ag, and write the force on the vortex as F =4pj
xn =@pdAg/dt. It should be noted here that there is a
relation between this charge vector potential and the so-
called modular electric field which was employed to
demonstrate the nonlocality of the Aharonov-Casher
effect in Ref. 4. The charge vector potential is related to
the enclosed charge Qp by the line integral along the cir-
cumference of the array:

(~Ag dl=Qp.
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FIG. 2. (a) Energy levels of the vortex (for N=M=10) as
a function of the gauge charge Qo (solid lines). Only the two
lowest bands are shown. The dashed lines indicate the free-
vortex band structure. (b) Alternative geometry for the obser-
vation of the AB eff'ect for vortices (see text).

are also periodic when the gauge charge on a particular
island is increased with 2e. It follows from (2) and (3)
that a vortex represents a special case, since its energy
levels are periodic functions of the sum of the gauge
charges induced on the islands which are enclosed by the
vortex, irrespective of the distribution of these charges
over the enclosed islands. This illustrates the topological
nature of the effect. (Note that in the particular case
discussed in this Letter, the charge Qo is induced ex-
clusively on the center island. )

The spectrum of (3) consists of discrete energy levels

E„(Qo), which depend periodically on Qo with period 2e.
The presence of the E~(x,y) term gives rise to the for-
mation of gaps at Qo=+e, 0, and —e. The first two
levels are schematically given in Fig. 2(a). When the
disorder is not too strong, and the gaps are small, the en-

ergy of the vortex in the ground state is approximately
given by the free-particle dispersion relation:

Eo(Qo) =4oQ /o2m, .L

From this the maximum persistent voltage can be es-
timated: V, =dEo(Qo =e)/dQo ——2e/CL . A typical
experimental value' is C= 10 ' F, which gives V, = 3

pV. In order to observe the vortex band structure, kT
should be reduced below the energy-level spacing be-
tween the ground state and first excited level, which is

about 8E„/L . This requires that the temperature is

below 80 mK.
An alternative way to observe the AB eA'ect for vor-

tices is given in Fig. 2(b). This experiment is related to
the interference between two Auxon beams, which is dis-
cussed in Ref. 4. The phase difference between the vor-
tex paths A and 8 is equal to 2+Qp/2e, with Qo the

gauge charge induced on the center superconducting is-
land. The resulting interference between these paths
may lead to a modulation of the voltage V measured be-
tween the top and bottom superconducting boundaries of
the array.

In the presence of (weak) quasiparticle tunneling, the
effective gauge charge Qo can differ from the externally
induced Qo due to the tunneling of single electrons to the
interior island. When Qo is changed adiabatically and

~ Qo ~
exceeds —, e, the quasiparticle tunneling will reduce

Qo to the interval —-'e (Qo ( —,
'

e, because in this
way the ground-state energy is reduced [see Fig. 2(a)].
This means that the vortex energy levels will become
periodic in Qo with period e. However, for

~ Qo ~
&& —, e,

the ground-state energy and the associated persistent
current will not be affected by the quasiparticle tunnel-
ing. When Qo is changed fast enough, ' ' so that the
probability of a quasiparticle tunneling event is negligi-
ble in the time interval in which Qo increases with 2e, it
will sti11 be possible to observe the vortex energy-level
structure as oscillations of the voltage V (Bloch oscilla-
tions) with period 2e.

It is clear from the above analysis that the vortex band
structure is very brittle. Too large disorder in E~(x,y)
will localize the vortex wave function, and the energy
levels will become insensitive to Qo. A coarse estimate
can be made to discuss the effect of dissipation. Classi-
cally, the motion of the vortex is damped with a time
constant r=RC, with R the subgap resistance of the
junctions. This will induce a broadening of the energy
levels by an amount hE = h/r The broad.ening should
be less than the level spacing, which gives the criterion
R &L h/e . Also the effect of the discrete lattice
should be taken into account. The effect of the discrete
lattice on the Josephson energy has already been includ-
ed in the vortex Hamiltonian [Eq. (3)] as a periodic po-
tential-' with amplitude 0.07EJ. The effect of the
discrete lattice on the vortex mass is more difficult to un-
derstand. Eckern and Schmid' have nevertheless ob-
tained the result that a vortex can move through the ar-
ray as an almost free particle. However, in their model
they did not treat the vortex core exactly.

An important question is how the vortex motion is
aA'ected by the interaction with the harmonic oscillators.
To investigate this interaction, a computer calculation of
the classical vortex motion was performed. It was found
that a vortex, when released near a superconducting
boundary, did not perform a harmonic oscillation. Also
it was found that when an external current was applied,
the supplied energy was divided equally among Joseph-
son and charging energy, which shows that energy was
transferred to the oscillators. However, these results,
which indicate strong interaction, do not necessarily
mean that the AB-type effect is destroyed. Recently,
Geigenmuller and Schon ' calculated the energy levels
of a ring-shaped array, similar to that described in this
Letter. Although the calculations were limited so far to
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systems with a small number (6 or 15) of junctions, the
results confirm that the energy levels of the array are
dominated by the presence of the vortex in the system,
and also that the levels are periodic functions of the
gauge charge on the interior island. Calculations on

larger systems are in progress.
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