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Self-Organized Criticality and Singular DiH'usion
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We suggest that certain open driven systems self-organize to a critical point because their continuum
diA'usion limits have singularities in the diffusion constants at the critical point. We rigorously establish
a continuum limit for a one-dimensional automaton which has this property, and show that certain ex-
ponents and the distribution of events are simply related to the order of the diA'usion singularity. Nu-
merically we show that some of these results can be generalized to include a class of sandpile models
which are described by a similar, but higher-order, singularity.
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A wide variety of open dissipative dynamical systems
are seen to exhibit scale-invariant characteristics remin-
iscent of traditional equilibrium systems at a critical
point. Bak, Tang, and Wiesenfeld' introduced the first
class of systems of this kind, the cellular automata re-
ferred to as "sandpiles. " In the absence of intrinsic spa-
tial inhomogeneities these systems generate avalanches
of all sizes —the so-called "self-organized criticality"
(SOC)—due to a dynamical threshold instability associ-
ated with the local slope of the pile. In an attempt to de-
scribe the anomalously large fluctuations exhibited by
these and related systems, others have studied correla-
tions in a diffusion equation with nonlinear corrections,
driven by a white noise. Inherent in this analysis is the
assumption that these systems are at a critical point (as-
sociated with the critical angle of repose) and that the
leading nonlinearities determine the critical exponents
which describe the scaling behavior. However, a direct
connection between any self-organizing model and these
simple driven diffusions has not been made. So far the
continuum equations which exhibit some form of scale
invariance fail to capture the singular nature of the
threshold criterion which governs the local evolution of
the SOC models, and they do not explain the evolution
of the system to a critical point.

In this Letter we explain why certain open driven sys-
tems organize to a critical point. Our key result is that
continuum diffusion limits of certain self-organizing
models exist and have the interesting feature of possess-
ing diffusion "constants" which not only depend on the
local density of the conserved quantity, but which in fact
have a singularity at the critical point. With a pole in

the diffusion constant, the boundary-value problem
corresponding to the open driven system exhibits a
boundary-layer phenomenon, and as the system size
diverges the solution converges to the critical point (the
pole) everywhere but on a vanishing fraction of the sys-
tem. Additionally, the solution of the boundary-value
problem can be used to extract information about the
distribution of events in the original system. The analyt-
ical work in this paper will focus on a simple, but until
now unstudied, model which exhibits SOC (nontrivial

scaling properties without the tuning of a parameter).
Using simulations we will show that many of our results
can be generalized to describe other systems such as
sandpiles.

We begin by describing the self-organizing model
which succumbs to rigorous analysis. The model is
designed to mimic the way that regions of high slope
diffuse to regions of low slope during an avalanche. We
consider a finite one-dimensional lattice with a non-
negative integer height h(i) associated with each site
i 1, . . . , N. The system evolves continuously in time,
such that for a fixed positive integer h, we have the fol-
lowing: (i) If h(i) ~ h, then at rate I, h(i) ~ h(i) —

1

and h(j) h(j)+1, where j is the nearest site j&i
with h(j) & h„. (ii) The same transition rate holds for
j&i As .in the sandpile models, the dissipation and
driving mechanisms are associated with the boundary
conditions of the finite system. Here we assume that the
right boundary is open and the left boundary is closed, so
that if there is no such j satisfying the above conditions
then in (i) the grain leaves the system, and in (ii) the
transition is suppressed. We drive the system by inject-
ing new grains at rate a at site i =1, which instantly hop
to the first site j with h(j) &h, . Since configurations
with h(i) & h, —

1 or h(i) & h, for any i are transient,
each site can be in one of only two states. Taking h, =1
we have a tivo state model w-ith site values 1 (occupied)
or 0 (vacant): 1's hop at rate I to the nearest 0 on the
right and on the left; 1's fall off the right edge, are
blocked on the left edge, and are injected at the first site
i = 1 at rate a.

The advantage of working with the two-state model is
that the continuum limit can be obtained rigorously for a
closed system (a torus), where the spatially averaged
density (p) of 1's is conserved. Two features make
analysis of this model tractable. First, product measure
with constant density (p) is invariant (i.e. , each site is
independently occupied with a 1 with probability (p)).
Second, the process is reversible (i.e., detailed balance
is satisfied) for the family of equilibria (0((p) (1).
Note that at density (p), the expected jump size is
(formally N=~) P;-ik(p) '(1 —(p)) =(1 —(p))
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which diverges as (p) 1. This fact is a strong indica-
tion of a singular diffusion constant, and will play an im-

portant role in driving the open system toward the criti-
cal point. We can interpret the 0's as being domain
walls which locally bound the size of a jump. The densi-
ty of 0's, pa= 1

—(p), is the order parameter in the two-
state model, where po 0 as (p) approaches the critical
point ((p) 1). A similar, although less trivial, critical
behavior was observed in sandpiles in Rei. 3.

The exact form of the diffusion constant can be de-
duced from a simple calculation assuming product mea-
sure and a linear profile in the density with constant
slope 2e. The diffusion constant is then given by D(p)
=I/2e, where I is the current through a plane separating
two sites:

k k

+ [p+(2i+1)e] —Q [p —(2i+1)e]
k 0 i 0 i 0

For each k the first term is associated with current flow

in the positive direction, and the second term with the
negative direction. The terms are the probabilities that
all sites from the plane to the kth site to the left (or
right) are occupied, in which case the kth particle can
jump through the plane at rate 1. Keeping terms to
O(e) in (1) we obtain the resulting difl'usion constant

D(p) -(1+p)/(I —p)', (2)
which depends on the local density p, and has a third-
order pole at p =1. With a great deal more work the fol-
lowing theorem can be proved, establishing that the con-
tinuum limit of the two-state model is

Bp r) D( )8p
ilt 1)x jx (3)

j

Stripped of technical details, the theorem states that if
we consider the system as a random measure with mass
1/N at each occupied site, scaling site separation by 1/N
and the transition rates by N (standard diffusion scal-
ing), then as N ~ this random measure approaches a
deterministic density which solves the diffusion equation
(3) with the diffusion constant given by (2).

Theorem —On the disc. rete torus T~ = [1, . . . , N]
denote the configuration at time N t by r)„where
r), (i) I if site i is occupied. Given an initial density
profile «(x) on the continuum torus T=[0,1] which is
uniformly bounded away from 1, start the system on T~
with this profile: P(rto(i) =1)=«(i/N), independent of
other sites. To each occupied site associate a mass 1/N.
As N , with spatial rescaling this random measure
converges to the deterministic density p(t, x) which
satisfies (2) and (3), with p(0, x) =«.(x). The conver-
gence is in the weak sense —for any smooth function y
on the torus T,

JV fO

lim N ' g y —rt, (i)— tti(x)p(t, x)dx~ T

in distribution.
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FIG. 1. The numerical and analytical profiles (both shown
in the main figure) for the two-state model are essentially coin-
cident. The inset is the difference between them. The analyti-
cal result is given by Eq. (5) with a =1, while the numerical re-
sults are obtained as the time average of a system of corre-
sponding size A' 8192.

Remark. —A complete proof of the theorem is given in

Ref. 4, and is based on the techniques developed in Ref.
5 for establishing hydrodynamic limits.

Although Eq. (3) was derived for the closed system,
we will use it to derive the behavior of the open driven
system for large W, where the appropriate boundary
conditions are

p(1) =0, p'(0)D(p(0)) =— (4)

where a is a constant. The first condition is associated
with the open boundary on the right. The second condi-
tion is simply a flux-balance condition at the left bound-
ary. Note that the driving rate is proportional to N be-
cause we rescale a system of size N into the unit interval
in order to use the hydrodynamic equation (doubling the
size of a one-dimensional diffusive system with fixed Aux

and then rescaling to the original size is equivalent to
doubling the flux in the original system). Asymptotically
for large 1V, the solution to the boundary-value problem
1S

( ) i 1
—44aN (1 x) + 1—

(5)
2aN(1 —x)

In spite of the fact that (3) was derived for a closed
system, (5) is in very good agreement with numerical re-
sults for the time-averaged configuration of the original
system (see Fig. 1). The presence of the "boundary lay-
er" at the open boundary with thickness that vanishes as
N is explained by noting that for any specified den-

sity p (1 and for any (large) N, there will be a site at
xtv kiv/N with density approximately p. The flux con-
dition p'(xiv) = —aND(p) ' implies that the slope of
the profile at xiv diverges as N, implying the boundary-
layer thickness scales like 1/N.

Scaling properties follow immediately from the above
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considerations: (1) The thickness 6 of the boundary lay-

er scales like 6-N '. (2) The mean density p~
=fop~(x)dx converges to the critical point p=1 as p~
—1

—2//JaN Th. is implies the density of zeros po(N)
=1 —

pjv scales like po(N)-2/daN. (3) The steady-
state distribution of jump sizes can be calculated assum-

ing product measure locally. In a system of N sites, the
probability P(k, N) that a 1 will hop k & N sites in an

event is given by

P(k N) = [1 po(N)] po(N) . (6)
The comparison between these results and simulations of
the open system are excellent.

Because po(N)-2/JaN, the distribution of events

will scale with the number of sites. From (6) we derive
finite-size scaling P(k, N) =N Pg(k/¹) in the limit of
large N, obtaining the universal curve

g(z) =we (7)

with A =2/Ja and P = v = —,
' .

These results can be extended to other systems. For
example, an obvious generalization of the two-state mod-

el to higher dimensions, in which each 1 moves to the

p, —[p„"+ (y —1)(1 —)](r)=, ((,),

nearest 0 in a randomly selected direction, satisfies the
d-dimensional generalization of (3). The general singu-
lar diffusion equation that we consider is of the form

(8)
8r

=V [D(p)Vp].

The exponents characterizing the scaling behavior de-

pend on the order of the pole at p, in the diffusion con-
stant and on the boundary conditions, but not on any an-
alytic factors which are bounded away from zero and
infinity. Therefore, we consider the diff'usion constant

(10)

(»a)

D(p) =1/(p, —p)'. (9)
We will solve (8) for the simple case of a source at the

center of a d-dimensional disk, where p=p(r) and the
boundary conditions are

p(1) 0, p'(0)D(p(0) ) —a~ .

Here ajv is the rescaled driving rate which depends on
both dimension and how the system is being driven.
Note also that in order to have a well posed boundary-
value problem in d ~ 2 the ffux condition at r 0 must
be replaced by a similar condition at a radius 8 0,
which we incorporate into a~ in the solutions below: for

1,

for d=2,

p(r) = ~

ford~ 3,

p
—[p ~ ' —ajv(p —1)ln(r)] ' ', &A I,

,p, [1 r"], ((=I;— (1 lb)

p, p
—(P () [I r ]

a~(y —1)

p(r)=, d 2

—aN (1 —r )/(d —2).
p, [1 —e ' ], (t =l.

~ —]/((t —[)

(1 lc)

Scaling relations are immediate. For example, in one
dimension, where a~ =aN, the density of zeros is given

by

N ' ~ ', if/Pl, 2,

po(N) —N ' if /=1,
N 'lnN if /=2.

(12)

Substituting (12) into (6), the corresponding distribution
of jump sizes P(k, N) is obtained (with the product-
measure assumption). In each case finite-size scaling
leads to a universal curve of the form (7), where the ex-
ponents P and v are equal, and given by the same ex-
ponents as that of the order parameter po in Eq. (12),
with logarithmic corrections in the case p =2. It is worth
noting from (11) that, given a source at the origin, con-
vergence to the critical point [i.e., p(r) p, as N ~]
occurs only if a& diverges as N ~. %'ith a constant
driving rate a, scaling a system with N" sites onto the
unit disk yields az =aN, which does not diverge for

d ~ 2. In this case there is a finite characteristic jump
distance, and finite-size scaling is not observed. To ob-
serve SOC in d ~ 2, we could take a driving rate at the
origin diverging faster than N in the unrescaled sys-

tem, or a constant driving rate could be applied to a
larger set of sites (e.g. , on part of the boundary as is the
case in certain sandpile models). In the latter case, one
would have to solve a diff'erent boundary-value problem,
but we expect that the scaling behavior would be the
same as that arising from (11)with the proper ajv.

We will now provide evidence that equations of the
form (8) also underlie other self-organizing models. We
consider the one-dimensional limited local sandpile mod-
els in which n grains of sand fall to the right whenever
the local slope z(i) exceeds the threshold z, . As shown

in Ref. 3, there are domain walls [any site i with

z(i) ~z, n] which —bound avalanches, much like 0's
bound jumps in the two-state model. When this model is
run on a torus, total slope is conserved. Furthermore,
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there is a critical slope s, (z, so that if the mean slope
(s):—([/N )g;- iz (i) (s„ then domain walls persist,
while if (s) ) s, they become extinct. This implies that
as (s) t s, the density of domain walls approaches zero,
so that the length scale on which slope is transported via
avalanches diverges, suggesting a singular diffusion con-
stant.

We verify the singular diffusion in sandpiles on both a
closed and an open set, taking z, =n=2 (for which
s, = —', ). First, we start the system on a torus with aver-

age slope (s) and observe the relaxation rate of a long-
wavelength sinusoidal perturbation as a function of (s).
For large systems a log-log plot of relaxation rate versus

s, —(s) has a slope of —4 (inset to Fig. 2), indicating
that the diffusion constant diverges as (s) s, with the
order of the singularity being p 4. Second, Fig. 2
shows that the time-averaged slope profile on the open
system (note the presence of a sharp boundary layer)
agrees well with the solution (11) with p replaced by s
and with d= 1, p 4, and an optimally selected constant
a (aiv aN). From (12), we obtain the corresponding
density of domain walls which scales like N ', con-
sistent with simulations in Ref. 3. While the agreement
of the profiles in Fig. 2 is impressive, so that scaling
properties of the solution should apply to the system, the
boundary conditions (10) do not accurately describe the
sandpile model, in which there is no flux of slope through
the right boundary. Instead, the boundary layer is
driven by an effective potential acting at the left edge
which arises from an asymmetry of the rules at that
boundary (see Ref. 3) and which scales with N. A simi-
lar asymmetry (potential) yields the slight decrease in

the profile at the right edge.
To conclude, we have introduced a two-state model

which exhibits SOC, for which we have rigorously estab-
lished the existence of a diffusion limit with a singular
diffusion constant. The boundary-value problem corre-
sponding to the rescaled open driven system in one di-
mension has a solution which converges to the diffusion
singularity as the system size diverges. In higher dimen-
sions appropriate scaling of the driving rate yields simi-
lar results. Scaling properties follow directly from the
solution. In addition, numerical evidence indicates that
singular diffusion also occurs in a class of sandpile mod-
els. We suggest that singular diffusion provides a cogent
framework on which to address the issue of how self-
organizing systems find their critical points.
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FIG. 2. Numerical and analytical slope profiles for the lim-
ited local sandpile model on an open system scaled into the unit
interval (N 2048). The inset illustrates the relaxation rate
(i.e., the diff'usion constant D since the primary mode relaxes
like e n') of a sinusoidal perturbation as a function of distance
from the critical point in the closed system. In both cases we
find that the sandpile model is associated with a singular
diA'usion equation of the form (8), where the order of the pole
4-4 in (9).
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