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A recent macroscopic approach to the giant dipole resonances in hot rotating nuclei is extended to in-

clude the angular distributions of the y rays emitted in the resonance decay. It provides a uniform
description of thermal fluctuations in all quadrupole shape degrees of freedom within the framework of
the Landau theory. In particular, the inclusion of fluctuations in the nuclear orientation with respect to
the rotation axis is crucial in reproducing the observed attenuation of the angular anisotropy. The
theory is applied to recent precision measurements in Zr and Mo and is the first to reproduce well

both the observed giant-dipole-resonance cross sections and the angular anisotropies.

PACS numbers: 24.30.Cz, 24.60.Dr, 24.60.Ky, 27.60.+j

The main experimental probe in the study of the
shapes of hot rotating nuclei is the giant dipole resonance
(GDR) built on nuclear excited states. ' Most of the
data available in the past were restricted to the GDR ab-

sorption cross section. However, recent measurements
have also determined the y-ray angular distributions.
These provide additional information on the role played

by the deformation in heated rotating nuclei. A de-
formed nucleus is expected to have an anisotropic y-ray
angular distribution, and the magnitude of the anisotro-

py should increase with deformation.
Theoretically, we have introduced the Landau theory

of shape transitions as a mean-field theory in terms of
which one can study the universal features of the equilib-
rium shape evolution versus temperature and spin. The
importance of shape fluctuations around the equilibrium

configuration in the finite nuclear system was recognized

by several authors. Their existence makes the rela-
tionship between the equilibrium shape and the data
more complex and an accurate theory is required for a
successful interpretation of experiments. We have

developed a fluctuation theory within the framework of
the Landau theory in which all five quadrupole shape de-

grees of freedom a2„are treated uniformly io, i i This
means that fluctuations in the nuclear orientation rela-
tive to the rotation axis are included in addition to fluc-

tuations in the intrinsic shape. The former were neglect-

ed by other authors. '

With all parameters fixed by the zero-temperature nu-

clear properties, our fluctuation theory reproduces very
well existing experimental GDR absorption-cross-section
measurements in hot nuclei. ' "These cross sections are
found to be dominated by the intrinsic-shape fluctua-
tions. Although the inclusion of the orientation degrees
of freedom was important in determining the metric for
the fluctuations and its dependence on the intrinsic de-
formation, the orientation fluctuations themselves, if tak-
en into account, were found to have negligible effects on

the cross section in the rare-earth nuclei. "
In this Letter we show, however, that the orientation

fluctuations play a very important role in the determina-
tion of the GDR y-ray angular anisotropies. Further-
more, our unified fluctuation theory is shown to repro-
duce well both the GDR cross sections and the angular
anisotropies of recent precision measurements in Zr
and Mo nuclei ' at finite temperature and spin where
their equilibrium shape is expected to be a noncollective
oblate. To the best of our knowledge it is the first time
that both the cross section and the angular distribution
of the GDR y rays are well reproduced by a theory.

We start with the expression for the differential cross
section for a nucleus of energy E and spin J to emit an
electric dipole y ray of energy e and direction 8 (with
respect to an axis to be specified later):
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where E'=E —e. The sum in (1) represents an average over all initial states at energy E and spin J and a sum over all
final states at energy E'. p(E,J) is the initial density of states, D„is the dipole operator, and the angular functions
F„(B)are given by Fo =2(1 —Pz)/3 and F~ i =2(1+Pq/2)/3, with P2(cos8) the Legendre polynomial of second de-
gree.

Equation (1) can be expressed as' '
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where

cr(e) = "'
dt e'"'"g(D„'(t)D„(0))

3h 2 al —oo

is the GDR absorption cross section and

3 J -dt e'"t"(DJ(t) Do(0))
2 j: dt e'" "g(D„(t)D„(0))

(3)

(4)

is the angular-anisotropy parameter. In Eqs. (3) and

(4), D„(t)is the dipole operator in the Heisenberg repre-
sentation and the average is over the microcanonical en-

semble at a given energy E and spin J.
As usual, we replace the microcanonical average by a

canonical one with the corresponding temperature T and

angular velocity m. In doing so we have chosen a pre-
ferred direction m, so that the y-ray angular distribu-
tions are measured with respect to the rotation axis (i.e.,
approximately with respect to the spin direction). Ex-
perimentally a2 is usually measured with respect to the
beam direction which is perpendicular to the spin direc-
tion. We then have to multiply (4) by —

& .

The laboratory dipole equilibrium correlation func-
tions (D„(t)D„(0))in Eqs. (3) and (4) are calculated as
in Ref. 11: For fixed quadrupole deformation az„
(p = —2, —1, . . . , 2), we assume harmonic oscillations
of a dipole which is rotating with angular velocity m.

The vibrational frequencies E, (at co 0) are as usual
assumed to be inversely proportional to the correspond-

1

ing semiaxis length. In terms of the normal-mode vari-

ables of the rotating oscillator, the correlation tensor is
assumed to be diagonal and its corresponding Fourier
transform in (3) and (4) gives Lorentzian functions with
centroid E~(co) and width I ~. . The width satisfies the
power law I

~
=I o(E,./Eo), where I o and Eo are the

width and energy of the resonance built on a spherical
nucleus. The resonance parameters Eo, I 0, and 6' are as-
sumed to be temperature independent and they are
determined from the known ground-state GDR experi-
mental cross sections. For 6 we take" 6=1.6. Trans-
forining the correlation functions to the laboratory frame
we find the contribution to o and az from a given a2„.
Instead of a2„we can use the Hill-Wheeler intrinsic-
shape parameters P, y and the Euler angles t1 =(y, 8,&).
The latter characterize the orientation of the principal
frame with respect to the laboratory frame (in which co

is parallel to z).
To account for thermal fluctuations we then average

[both the numerator and the denominator in (4)] over all
possible a2„,using the unitary invariant metric ' "

D[a2„] Qd a„2=P Isin3y~dPdyd 0, (5)

and the Boltzmann probability distribution

P[a2„]cx: exp[ F(T,co;a—2„)/T]. (6)

In (6), F(T,co;a2„)is the free energy as a function of the
deformation a2„at temperature T and angular velocity
co. From the Landau expansion of the free energy we

have, "to second order in co,

F F(T, co =0P, y) —
—,
' (I„sin'8cos'&+I~~ sin'8sin'&+I„cos'8) co', (7)

where 1„(T;P,y), I~~ (T;P, y), and 1„(T;P,y) are the
nuclear moments of inertia along the principal axes x',
y', and z'.

To compare our theory with experiment we have ap-
plied it to three cases for which precision measurements
were recently taken:' Zr at T=1.6 MeV, J=9h; Zr
at T=1.7 MeV, J 22h; and Mo at T=2 MeV,
J=33h. The free-energy surfaces were constructed'
from a cranked Nilsson-Strutinsky Hamiltonian. The
cranking calculations were done only for cu parallel to a
principal axis from which the moments of inertia were
determined as a function of P and y. The free energy for
a general orientation 0 is then determined by the ex-
pression (7). We have calculated the phase diagrams of
these nuclei and found that at the equilibrium conAg-
uration co=0.47, 1.03, and 1.36 MeU, respectively, in
each of the above three cases. The equilibrium shape is
a noncollective oblate' (y= —180', 8=0) whose defor-
mation increases with spin; P=0.02, 0.08, and 0.16, re-
spectively. When the metric (5) is included with the dis-
tribution (6), the resulting most probable shapes are tri-
axial (y = —150') and their deformation is significantly
larger; P =0.24, 0.31, and 0.46, for the above three cases.

From the ground-state GDR data'4' in Zr and Mo
we have determined ED=16.82 MeV and I o 5 MeV.
Both cr and ai were then calculated from (3) and (4)
where fluctuations in the intrinsic deformation (P, y)
were included as well as those in the orientation (8,&).
The results are shown by the solid curves in Fig. 1. They
agree very well with the experiment as is demonstrated
for the J =22h case where the data' are shown by the
error bars. In particular, the theory reproduces accu-
rately the observed broadening of cr at finite tempera-
ture. In judging the quality of the agreement between
the calculated and experimental a2, the region E, 11
MeV should be disregarded since there the y rays from
daughter nuclei contaminate the signal. ' The latter
have lower spin and energy and tend to drive the ob-
served a2 to zero. Also at the high-energy side we are at
the tail of the resonance and the error bars are large.
Thus the range to consider for the a2 At is 11 ~E,~ 20
MeV. The experimental data for the other two cases
also agree well with our predictions. '

The dashed lines in Fig. 1 are the results of similar
ca1culations but with no orientation Auctuations. The
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FIG. 1. The GDR cross sections o (top row) and angular
anisotropies a2 (bottom row) vs y-ray energy E„for OZr and

Mo at finite temperature and spin. The solid lines show the
results of the calculations based on Eqs. (3) and (4) where
fluctuations in both the intrinsic shape and the nuclear orienta-
tion were included according to the metric (5). They agree
very well with the experiment as is demonstrated for the
J 22h case, where the experimental data (Ref. 12) points are
shown by error bars. The agreement with the other two cases
is of similar quality. The dashed lines show the results of simi-
lar calculations but with no orientation fluctuations. Notice
the attenuation in a2 when orientation fluctuations are includ-
ed. Finally, the dotted lines show the results when the metric
(8) is used (Ref. 8) instead of (5), and with no orientation
fluctuations.

10 15 20

metric (5) is used. Comparing with the solid lines, we

see that the effect of the orientation fluctuations on the
cross section is small. Only in the high-spin case
(J=33f7,) is this effect measurable, and providing a
correction at the high-energy side of the resonance.
However, the effect of the orientation fluctuations on a2
is large; it causes a considerable attenuation in a2 in

agreement with the experiments.
The dotted lines in Fig. 1 show the results of the calcu-

lations where the Auctuations are evaluated with a
metric used by other authors

D[a) =pdpdy, (8)

which includes no orientation fluctuations. We see that
these results are in strong disagreement with the mea-
sured GDR cross sections. The GDR widths are consid-
erably underestimated by the calculations and their
shape is different from the experimental ones. The a2's,
on the other hand, are close to the ones calculated with

the metric (5) and with orientation fluctuations. If a
temperature-dependent width' is added to fit the experi-
mental width of the GDR cross sections, then a disagree-
ment with a2 will result. Also, if orientation Auctuations
are included with the metric (8), then aq will be strongly
attenuated relative to the experiment. Thus only a
theory with intrinsic-shape and shape-orientation fluc-
tuations according to the unitary metric (5) can repro-
duce both the observed cross sections and the a2's. The
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FIG. 2. Attenuation of a2 due to orientation fluctuations.
Top: The a2 averaged over orientation at fixed deformation
(P, y) (solid lines) compared with a& at the equilibrium orienta-
tion 8 0 (dashed lines) for Zr at T 1.8 MeV and J=22h.
Shown are two values of P, the equilibrium value (P 0.08)
and the most probable value (P 0.31), and three values of y.
Notice that the attenuation is stronger for oblate shapes (than
for prolate) and at smaller deformations. Bottom: As above
but for Mo at T 2 MeV and J 33k where the equilibrium
value of P is P 0. 16 and the most probable value is P 0.46.
Notice that at the higher spin the attenuation is weaker and
the a2 before orientation averaging is larger (for either the
equilibrium or the most probable deformation).

good agreement between experiment and theory is also
an indirect confirmation of the existence at finite temper-
atures of noncollective oblate shapes whose deformation
increases with spin.

The effects of Auctuations on a2 can be understood by
calculating a2(rp, y) at a fixed intrinsic deformation p, y
through an average over all orientations 0 =(8,&). In
Fig. 2 (top panel) we compare the averaged a2(e;p, y)
(solid lines) with a2 of the equilibrium orientation 8=0
(dashed lines) for two values of P, the equilibrium and
the most probable ones, and three values of y, oblate, tri-
axial, and prolate, all at J=226. The net effect of the
orientation fluctuations is to reduce the a2 anisotropy.
This attenuation is stronger in the oblate case than in the
prolate case. For the equilibrium deformation p=0.08
the attenuated a2 is almost zero. However, the most
probable p is 0.31, for which the resulting anisotropy is

significant. It is seen that the enhancement in a2 due to
intrinsic-shape fluctuations is counteracted by its
suppression due to orientation fluctuations, so that the
observed a2 is an indirect indication of the equilibrium
shape.

To understand the spin dependence of the aq attenua-
tion due to orientation Auctuations, we show in Fig. 2
(bottom panel) similar calculations but for J=336.
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Now the equilibrium deformation (P=0.16) and the
most probable deformation (P =0.46) are larger. We see
from Fig. 2 that for higher spin, a2 is less attenuated.
The main reason is that the distribution (6) becomes
more peaked around the most probable orientation 0 =0
(due to the ru factor in the exponent) so that the fluc-
tuations are reduced.

The anisotropy parameter a2 is more sensitive to the
spin (than it is to temperature) and its magnitude in-

creases with spin (see Fig. I ). This is mostly due to the
increase of the equilibrium and most probable deforma-
tions with spin and partly due to the weaker attenuation
at higher spins as explained above.

To conclude, we have demonstrated that a macroscop-
ic fluctuation theory that treats uniformly all five quad-
rupole degrees of freedom in the framework of the Lan-
dau theory can simultaneously provide a good descrip-
tion of the GDR y-ray cross section and their angular
anisotropy. This unified description of fluctuations leads
to the unitary metric P isin3yidPdydQ. In particular,
we obtain good agreement with recent precision experi-
ments' in excited Zr and Mo nuclei. The success of
our theory implies that the quadrupole degrees of free-
dom a2„are the correct order parameters for the hot ro-
tating nucleus. In this paper we have assumed that these
degrees of freedom are adiabatic. To study nonadiabatic
effects' on a2 we can still use Eq. (4) but now the corre-
lation functions should be calculated by the methods of
Ref. 17.
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