Parton Distributions from an Operator Viewpoint

Aneesh V. Manohar^(a)

Physics Department, B-019, University of California, San Diego, La Jolla, California 92093 (Received 28 June 1990)

Spin-dependent quark and gluon distribution functions are derived in terms of light-cone correlation functions. The first moment of the gluon asymmetry Δg is shown to be related to the Chern-Simons current K^{μ} . Renormalization and factorization ambiguities and their implication for the g_1 problem are discussed.

PACS numbers: 13.60.Hb, 12.38.Bx, 13.88.+e

Deep-inelastic scattering cross sections for hadron targets can be calculated in QCD using factorization. The cross section is expressed as a "hard" cross section for the scattering of a probe (such as a virtual photon or W) off a pointlike parton, convoluted with a "soft" parton distribution function which gives the probability to find the parton in the target. Schematically,¹

$$\sigma_{T}^{i}(x,Q^{2},M) = \sum_{a} \hat{\sigma}_{a}^{i}(x,Q^{2},\mu) \otimes f_{a/T}(x,M,\mu) , \quad (1)$$

where *i* is the probe, *a* are the various partons (quarks and gluons), *M* is a hadronic scale (such as Λ_{QCD} or the target mass), and μ is a renormalization scale parameter, which is usually chosen so that $\mu \gg \Lambda_{QCD}$. The convolution of two functions is defined by

$$(f \otimes g)(z) \equiv \int_0^1 dx \int_0^1 dy f(x)g(y)\delta(z-xy) \, .$$

All the incalculable infrared effects are grouped into the parton distribution functions $f_{a/T}$. Equation (1) is non-trivial because the distribution functions $f_{a/T}$ are independent of the probe, and the hard cross sections $\hat{\sigma}_a^i$ are independent of the target. The hard cross sections $\hat{\sigma}$ are calculable in perturbation theory.

Deep-inelastic cross sections can also be computed using the operator-product expansion. This gives the structure functions in terms of certain coefficients in the operator-product expansion, multiplied by target matrix elements of towers of local twist-two quark and gluon operators. By combining the two approaches, it is possible to calculate the parton distributions in QCD in terms of light-cone correlation functions. This is well known for the quark distributions in a spin-averaged target. The results will be extended here to quark and gluon distributions in a polarized target.

Let me first summarize the standard analysis of the spin-averaged quark distribution.² To simplify the notation, denote the parton distribution functions in the proton, $f_{a/p}(x)$, by a(x), and connected proton matrix elements by $\langle \rangle$. To avoid trivial complications, I will consider a single quark flavor and omit factors of the electric charge. The hadronic tensor $W_{\mu\nu}$ for virtual-photon scattering off a proton target is

$$W_{\mu\nu}(p,q) = \frac{1}{4\pi} \int d^{4}\xi e^{iq \cdot \xi} \langle [j_{\mu}(\xi), j_{\nu}(0)] \rangle \, .$$

Taking the Bjorken limit, $q \rightarrow \infty$, q^+ fixed, and evaluating the commutator to zeroth order in α_s (i.e., using free-field theory) gives²

$$F_1(x) = \frac{1}{8\pi} \int_{-\infty}^{\infty} d\xi^- e^{-ixM\xi^-/\sqrt{2}} \\ \times \langle \overline{\psi}(\xi^-)\gamma^+\psi(0) - \overline{\psi}(0)\gamma^+\psi(\xi^-) \rangle.$$

The singularity as $\xi^- \to 0$ is a *c*-number and does not contribute to the connected matrix element. The structure function F_1 can also be computed using the parton model. To lowest order in α_s , gluonic partons do not contribute. The F_1 piece of the $\gamma^* q$ hard-scattering cross section $\hat{\sigma}_q^{j*}$ is $\delta(x-1)/2$ for quark or antiquark. This is equivalent to the statement that all the coefficient functions in the operator-product expansion are 1 to lowest order, since the moments of a δ function are 1. Therefore, the structure function $F_1 = \hat{\sigma}_q \otimes (q + \bar{q})$ implies that the distribution function $(q + \bar{q})(x) = 2F_1(x)$. Defining projection operators $P^{\pm} = \frac{1}{2}(1 \pm \alpha^3) = \frac{1}{2}\gamma^{\mp} \times \gamma^{\pm}$ and $\psi^{\pm} = P^{\pm}\psi$, one gets²

$$(q+\bar{q})(x) = \frac{1}{2\sqrt{2}\pi} \int_{-\infty}^{\infty} d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle (\psi^{+})^{+}(\xi^{-})\psi^{+}(0) - (\psi^{+})^{+}(0)\psi^{+}(\xi^{-})\rangle .$$
⁽²⁾

The first term is the quark distribution²

$$q(x) = \frac{1}{2\sqrt{2\pi}} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle (\psi^{+})^{\dagger}(\xi^{-})\psi^{+}(0) \rangle$$

and the second term is the antiquark distribution²

$$\bar{q}(x) = \frac{1}{2\sqrt{2}\pi} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle \psi^{+}(\xi^{-})(\psi^{+})^{\dagger}(0) \rangle.$$

It is easy to show that 2

$$q(x),\bar{q}(x) \ge 0, \quad q(x),\bar{q}(x) = 0, \quad |x| > 1,$$

$$q(-x) = -\bar{q}(x), \quad \bar{q}(-x) = -q(x).$$
(3)

 $\{q, \bar{q}\}$ do not vanish for x < 0. It is convenient to work with this convention for the distribution functions, since

© 1990 The American Physical Society

direct application of the operator-product expansion.

We have seen above that the moments of the hard cross

section $\hat{\sigma}_{q}^{\gamma*}$ give the coefficient functions in the operator-product expansion. Equation (4) implies that

the moments of the parton distribution functions are the matrix elements of local operators. The parton distribu-

tion functions can also be used to find the odd moments of F_1 . However, the trick of extending the integral to negative x cannot be used in this case, and the odd moments of F_1 cannot be expressed as the matrix element

The g_1 structure function can be computed in a similar

 $\{q, \bar{q}\}\$ then have definite charge-conjugation properties, and are simply related to light-cone correlation functions. $\{q, \bar{q}\}\$ for x < 0 are (up to a sign) the distribution functions for an antiproton. The even moments³ are

$$M_{n}(q+\bar{q}) = \frac{1}{2} \int_{-\infty}^{\infty} dx \, x^{n-1}(q+\bar{q})$$
$$= \frac{1}{2} \left(\frac{\sqrt{2}}{M}\right)^{n} \langle \bar{\psi}(i\partial^{+})^{n-1}\gamma^{+}\psi \rangle$$
(4)

using Eq. (3). This is the same result as obtained by a

$$g_{1}(x) = \frac{1}{8\pi} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle \bar{\psi}(\xi^{-})\gamma^{+}\gamma_{5}\psi(0) + \bar{\psi}(0)\gamma^{+}\gamma_{5}\psi(\xi^{-}) \rangle.$$
(5)

of local operators.

manner,

The g_1 piece of the $\gamma^* q$ hard-scattering cross section is $\pm \pm \delta(x-1)/2$ for a right- (left-) handed photon and a right-(left-) handed quark or antiquark. This implies that $\Delta q + \Delta \bar{q} = 2g_1(x)$, where $q_R(\bar{q}_R)$ and $q_L(\bar{q}_L)$ are the probabilities to find right- and left-handed quarks (antiquarks) in a polarized proton, and $\Delta q = q_R - q_L$, etc. In addition to the P^{\pm} operators introduced above, define two additional projection operators $P^{R,L} = \frac{1}{2}(1 \pm \gamma_5)$. $[P^{R,L}, P^{\pm}] = 0$, so one can define fields which are simultaneous projections, $\psi^{\pm R,L} = P^{\pm} P^{R,L}\psi$. Using this, one can write the parton distributions

$$\Delta q(x) = \frac{1}{2\sqrt{2}\pi} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle (\psi^{+R})^{\dagger}(\xi^{-})\psi^{+R}(0) - (\psi^{+L})^{\dagger}(\xi^{-})\psi^{+L}(0) \rangle$$

and

$$\Delta \bar{q}(x) = \frac{1}{2\sqrt{2}\pi} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle \psi^{+L}(\xi^{-})(\psi^{+L})^{\dagger}(0) - \psi^{+R}(\xi^{-})(\psi^{+R})^{\dagger}(0) \rangle,$$

which are the probabilities to find a net quark (antiquark) polarization in the proton. Note that L and R are interchanged between Δq and $\Delta \bar{q}$ because ψ^R annihilates left-handed quarks and creates right-handed antiquarks.

It is easy to show that the distribution functions vanish for |x| > 1, and

$$q(x) \ge |\Delta q(x)| \ge 0, \quad \bar{q}(x) \ge |\Delta \bar{q}(x)| \ge 0, \quad \Delta q(-x) = \Delta \bar{q}(x), \quad \Delta \bar{q}(-x) = \Delta q(x).$$
(6)

The odd moments of g_1 are given by

$$M_n(\Delta q + \Delta \bar{q}) = \frac{1}{2} \int_{-\infty}^{\infty} dx \, x^{n-1} (\Delta q + \Delta \bar{q}) = \frac{1}{2} \left[\frac{\sqrt{2}}{M} \right]^n \langle \bar{\psi}(i\partial^+)^{n-1} \gamma^+ \gamma_5 \psi \rangle$$

which agrees with the operator-product expansion. The gluon distribution functions can be defined using obvious generalizations of Eqs. (2) and (5). Let us defined the gauge-invariant distributions

$$xg(x) = -\frac{1}{2\sqrt{2}M\pi} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle G^{+a}(\xi^{-})G^{+}_{a}(0) + G^{+a}(0)G^{+}_{a}(\xi^{-}) \rangle,$$

and

$$x\Delta g(x) = \frac{i}{2\sqrt{2}M\pi} \int d\xi^{-} e^{-ixM\xi^{-}/\sqrt{2}} \langle G^{+a}(\xi^{-})\tilde{G}_{a}^{+}(0) - G^{+a}(0)\tilde{G}_{a}^{+}(\xi^{-}) \rangle, \qquad (7)$$

where $G^{\mu\nu}$ is the gluon field strength, and a sum over color indices is understood. Note that

$$\lim_{x\to 0} xg(x) \neq 0, \quad \lim_{x\to 0} x\Delta g(x) = 0,$$

so that the first moment of $\Delta g(x)$ exists, but that of g(x) does not exist. Define the polarization vectors $R = (0, -1, -i, 0)/\sqrt{2}$ and $L = (0, 1, -i, 0)/\sqrt{2}$. The sum over $\alpha = +, -, R, L$ only involves $\alpha = R, L$ since G^{++}

 $=G^{+}_{-}=0;$

$$-G^{+a}G_{a}^{+} = (G^{+R})^{\dagger}G^{+R} + (G^{+L})^{\dagger}G^{+L},$$

$$iG^{+a}\tilde{G}_{a}^{+} = (G^{+R})^{\dagger}G^{+R} - (G^{+L})^{\dagger}G^{+L},$$

using $R^{\dagger} = -L$, $L^{\dagger} = -R$. Thus g(x) can be interpreted as the probability to find a gluon in the proton with momentum fraction x, and $\Delta g(x)$ as the probability to

find a right-handed gluon minus the probability to find a left-handed gluon. These distributions vanish if |x| > 1, and satisfy $g(x) \ge |\Delta g(x)| \ge 0$, g(-x) = -g(x), $\Delta g(-x) = g(x)$. $M_n(g)$ for *n* even and $M_n(\Delta g)$ for *n* odd, n > 1, are related to the matrix elements of gauge-invariant local operators,

$$M_{n}(g) = -\frac{1}{2} \left(\frac{\sqrt{2}}{M} \right)^{n} \langle G^{+a}(i\partial^{+})^{n-2} G_{a}^{+} \rangle,$$

$$M_{n}(\Delta g) = \frac{i}{2} \left(\frac{\sqrt{2}}{M} \right)^{n} \langle G^{+a}(i\partial^{+})^{n-2} \tilde{G}_{a}^{+} \rangle, \quad n > 1,$$
(8)

which is also the result obtained from the operatorproduct expansion. Any other definition of Δg must satisfy Eq. (8), so it can differ from Eq. (7) only by $\lambda\delta(x)$ for some constant λ . There is no $\delta(x)$ singularity in the definition Eq. (7), because that would imply a ξ independent constant in the gluon-gluon correlation function. There is no reason to expect such a term for a confining theory like QCD. Thus Eq. (7) is the preferred definition of Δg .

The moments of the quark and gluon distributions can be expressed as matrix elements of gauge-invariant, Lorentz-covariant, twist-two operators. The light-cone method naturally gives the $+ \cdots +$ component of these tensors. [Nonlocal operators such as $\overline{\psi}(\xi)\gamma^+\psi(0)$ have to be written in general as

$$\overline{\psi}(\xi)\gamma^+P\exp\left(ig\int_0^\xi A_\mu(x)dx^\mu\right)\psi(0)$$

In light-cone gauge, $A^+ = 0$, the Taylor-series expansion of this operator gives Eq. (4).] There is no gaugeinvariant local operator corresponding to the first moment of Δg in the operator-product expansion. This does not imply that the first moment of Δg is zero. We can use Eq. (7) to compute the first moment (often denoted Γ):

$$\Gamma = M_1(\Delta g) = \int_0^1 dx \,\Delta g(x) = \frac{1}{2} \int_{-\infty}^\infty dx \,\Delta g(x) = \frac{1}{4\sqrt{2}M} \int_{-\infty}^\infty d\xi^- \,\epsilon(\xi^-) \langle G^{+\alpha}(\xi^-) \tilde{G}_{\alpha}^+(0) - G^{+\alpha}(0) \tilde{G}_{\alpha}^+(\xi^-) \rangle \,, \quad (9)$$

where $\epsilon(z) = 1$ if z > 1, and -1 if z < 1. This expression can be further simplified in light-cone gauge if one ignores surface terms and integrates by parts,

$$\Gamma = -\frac{1}{2} \left(\sqrt{2} / M \right) \langle K^+ \rangle \, .$$

where K^{μ} is defined by $\partial_{\mu}K^{\mu} = G\tilde{G}$. Thus K^{+} can be identified as the operator that corresponds to the first moment of Δg , provided the gauge-variant correlation function $\langle A^{\alpha}(\xi^{-})\tilde{G}_{\alpha}^{+}(0)\rangle$ vanishes as $\xi^{-} \to \infty$ when evaluated in light-cone gauge. In the remainder of this paper, $\langle K^{+}\rangle$ will be used as an abbreviation for Eq. (9).

The complications of an interacting field theory have to be dealt with at first order in α_s . The moments of the structure functions can be written schematically as

$$M_n(F_1,g_1) \sim c_n^{(q)} \langle \mathcal{O}_n^{(q)} \rangle + c_n^{(g)} \langle \mathcal{O}_n^{(g)} \rangle,$$

where, as usual, the equation holds only for even moments of F_1 and odd moments of g_1 . c_n are the coefficient functions, and \mathcal{O}_n are twist-two quark and gluon operators. At order α_s , the quark and gluon operators mix, and need to be renormalized. The renormalization conventions used are arbitrary, but the experimentally measured structure functions F_1 and g_1 do not depend on these arbitrary conventions. Since $c_n^{(g)}$ starts at $O(\alpha_s)$, the gluon distribution is needed only at O(1)and is unambiguous. The quark distribution, however, needs to be determined to $O(\alpha)$. Let $\mathcal{O}_n^{(q)}$ and $\mathcal{O}_n^{(g)}$ be the matrix elements of quark and gluon operators in a particular subtraction scheme. Then one can define the quark and gluon operators in another subtraction scheme by

$$\mathcal{O}_n^{\prime(q)} = \mathcal{O}_n^{(q)} + \alpha_s \lambda_n \mathcal{O}_n^{(g)}, \quad \mathcal{O}_n^{\prime(g)} = \mathcal{O}_n^{(g)} + \alpha_s \tau_n \mathcal{O}_n^{(q)}, \quad (10)$$

where λ_n and τ_n are arbitrary constants. The coefficients in the new scheme at $O(\alpha_s)$ are given by

$$c_n^{\prime(q)} = c_n^{(q)}, \quad c_n^{\prime(g)} = c_n^{(g)} - \alpha_s \lambda_n \mathcal{O}_n^{(q)}, \tag{11}$$

using $c_n^{(q)} = 1$ to lowest order. We have already seen that the coefficients $c_n^{(q)}$ and $c_n^{(g)}$ are to be identified with the hard-scattering cross sections $\hat{\sigma}_q^{\gamma*}$ and $\hat{\sigma}_g^{\gamma*}$, and $\mathcal{O}_n^{(q)}$ and $\mathcal{O}_n^{(g)}$ with the distribution functions. Therefore Eqs. (10) and (11) imply that pieces of the hard-gluon cross section can be shifted into the quark distribution, and vice versa.

This ambiguity can be seen directly using factorization. As discussed in detail in Refs. 1 and 4, the total cross section to order α_s can be written as

$$\sigma_p^{\gamma*}(x,Q^2,M) = \hat{\sigma}_q^{\gamma*}(x,Q^2,\mu) \otimes q(x,\mu,M) + \hat{\sigma}_g^{\gamma*}(x,Q^2,\mu) \otimes g(x,\mu,M).$$

To identify the hard $\gamma^* g$ scattering cross section, one can apply factorization to the full $\gamma^* g$ scattering cross section

$$\sigma_{g}^{\gamma*}(x,Q^{2},M) = \hat{\sigma}_{q}^{\gamma*}(x,Q^{2},\mu) \otimes f_{q/g}(x,\mu,M) + \hat{\sigma}_{g}^{\gamma*}(x,Q^{2},\mu) \otimes f_{g/g}(x,\mu,M).$$
(12)

To $O(\alpha_s)$, we can replace $f_{g/g}$ by its lowest-order value $\delta(1-x)$. Thus we can solve Eq. (12) to find

$$\hat{\sigma}_{g}^{\gamma*}(x,Q^{2},\mu) = \sigma_{g}^{\gamma*}(x,Q^{2},M) - \hat{\sigma}_{q}^{\gamma*}(x,Q^{2},\mu) \otimes f_{q/g}(x,\mu,M), \qquad (13)$$

2513

and

$$\sigma_{\rho}^{\gamma*}(x,Q^{2},M) = \hat{\sigma}_{q}^{\gamma*}(x,Q^{2},\mu) \otimes q(x,\mu,M) + \sigma_{g}^{\gamma*}(x,Q^{2},M) \otimes g(x,\mu,M) - \hat{\sigma}_{q}^{\gamma*}(x,Q^{2},\mu) \otimes f_{q/g}(x,\mu,M) \otimes g(x,\mu,M) .$$

The last term can be interpreted either as a correction to q or as a correction to $\hat{\sigma}_g^{\gamma*}$, since $f \otimes (g \otimes h) = (f \otimes g) \otimes h$. This is not quite correct⁴ because the infrared dependence in the last term cancels the corresponding infrared dependence in $\sigma_g^{\gamma*}$ to produce the hard cross section $\hat{\sigma}_q^{\gamma*}$ of Eq. (13). However, any infrared-independent piece can be included in either $\hat{\sigma}_g^{\gamma*}$ or q; i.e., we always have the freedom to make the redefinition

$$q'(x,\mu,M) = q(x,\mu,M) - \delta f_{q/g}(x) \otimes g(x,\mu,M),$$

$$\hat{\sigma}_{g}^{\prime\gamma*}(x,Q^{2},\mu) = \hat{\sigma}_{g}^{\gamma*}(x,Q^{2},\mu)$$

$$+ \hat{\sigma}_{q}^{\gamma*}(x,Q^{2},\mu) \otimes \delta f_{q/g}(x),$$
(14)

which is the same ambiguity discussed earlier using local operators. There is no canonical way to fix this ambiguity. The ambiguity [to $O(\alpha_s)$] is only in the quark distribution and $\hat{\sigma}_q^{\gamma*}$; there is none in either the gluon distribution or the experimentally relevant quantity g_1 . Any experiment that measures the gluon polarization will determine Δg as given by Eq. (7), with first moment Eq. (9).

What about $\Gamma = M_1(g_1)$? In QCD, $\Gamma = \langle \bar{\psi} \gamma^+ \gamma_5 \psi \rangle$.⁵ $\overline{\psi}\gamma^+\gamma_5\psi$ does not mix with gluon operators, so there is no renormalization ambiguity, and one gets $\Gamma = M_1(\Delta q)$ $+\Delta \bar{q}$). The parton model is not limited by any connection with local operators, so one is free to make the redefinitions Eq. (14), so that $\Gamma = M_1(\Delta q') + M_1(\delta f)$ $\times M_1(\Delta g)$, using $M_1(\hat{\sigma}_q^{\gamma *}) = 1$ to lowest order. The additional freedom arises in the parton model because "hard" (in the sense of factorization) is not equivalent to "local" (in the sense of a local gauge-invariant operator). The prescription of Refs. 6 and 7 corresponds to $M_1(\delta f) = -\alpha_s/2\pi$, and of Ref. 8 to $M_1(\delta f) = -\alpha_s/4\pi$. Both results for $M_1(\delta f)$ are equally "correct"; there is no unique and unambiguous "anomalous gluon" contribution. Any parton-model explanation of the g_1 problem that relies on a particular value for $M_1(\delta f)$ is clearly incomplete. The natural choice for the quark distribution from the QCD viewpoint is to use $\Gamma = M_1(\Delta q)$, which retains the connection of the distribution function with gauge-invariant local operators.⁹ In any case, a recent lattice calculation¹⁰ indicates that $(3\alpha_s/2\pi)M_1(\Delta g)$ $\lesssim 0.05$, and cannot play a significant role in the proton spin problem.

I would like to thank L. Mankiewicz for an interesting paper⁴ which motivated the present discussion. This work was supported in part by DOE Grant No. DE-FG03-90ER40546, a grant from the Alfred P. Sloan Foundation, and a Presidential Young Investigator award (PHY-8958081) from the National Science Foundation.

^(a)On leave from the Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139.

 1 I will use the analysis of W.-K. Tung, Int. J. Mod. Phys. A 2, 1369 (1987).

²R. L. Jaffe, in *Relativistic Dynamics and Quark Nuclear Physics*, edited by M. B. Johnson and A. Picklesimer (Wiley, New York, 1986).

³The moments of f(x) are defined by $M_n(f) = \int \int dx x^{n-1} x f(x)$.

⁴L. Mankiewicz, University of Washington report, 1990 (to be published).

⁵A. V. Efremov and O. V. Teryaev, Phys. Lett. B **240**, 200 (1990), have claimed that K^{μ} occurs in the operator-product expansion and contributes to g_1 . Their conclusion is incorrect; they used the wrong value for the triangle diagram.

⁶G. Altarelli and G. G. Ross, Phys. Lett. B **212**, 391 (1988).

⁷R. S. Carlitz, J. C. Collins, and A. H. Mueller, Phys. Lett. B 214, 229 (1988).

⁸S. D. Bass, N. N. Nikolaev, and A. W. Thomas, Adelaide University Report No. ADP-133-T80, 1990 (to be published).

⁹See R. L. Jaffe and A. V. Manohar, Nucl. Phys. B 337, 509 (1990), for a detailed discussion.

¹⁰J. E. Mandula, Phys. Rev. Lett. **65**, 1403 (1990).