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Spin-dependent quark and gluon distribution functions are derived in terms of light-cone correlation
functions. The first moment of the gluon asymmetry hg is shown to be related to the Chem-Simons
current K". Renormalization and factorization ambiguities and their implication for the gl problem are
discussed.
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Deep-inelastic scattering cross sections for hadron tar-
gets can be calculated in QCD using factorization. The
cross section is expressed as a "hard" cross section for
the scattering of a probe (such as a virtual photon or W)
off a pointlike parton, convoluted with a "soft" parton
distribution function which gives the probability to find

the parton in the target. Schematically, '

oT(x, g', M) =g cr!(x,Q', p) fat T(x,M, p),

where i is the probe, a are the various partons (quarks
and gluons), M is a hadronic scale (such as AQcD or the
target mass), and p is a renormalization scale parameter,
which is usually chosen so that p»AQcD. The convolu-
tion of two functions is defined by

(ftatg)(z) —= dx dy f(x)g(y)8(z —xy) .

All the incalculable infrared eff'ects are grouped into the
parton distribution functions f,tT. Equation (1) is non-
trivial because the distribution functions f,tT are in-

dependent of the probe, and the hard cross sections ~,'
are independent of the target. The hard cross sections tY

are calculable in perturbation theory.
Deep-inelastic cross sections can also be computed us-

ing the operator-product expansion. This gives the struc-
ture functions in terms of certain coefficients in the
operator-product expansion, multiplied by target matrix
elements of towers of local twist-two quark and gluon
operators. By combining the two approaches, it is possi-
ble to calculate the parton distributions in QCD in terms
of light-cone correlation functions. This is well known
for the quark distributions in a spin-averaged target.

The results will be extended here to quark and gluon dis-
tributions in a polarized target.

Let me first summarize the standard analysis of the
spin-averaged quark distribution. To simplify the nota-
tion, denote the parton distribution functions in the pro-
ton, f,l~(x), by a(x), and connected proton matrix ele-
ments by (). To avoid trivial complications, I will con-
sider a single quark flavor and omit factors of the electric
charge. The hadronic tensor 8'„, for virtual-photon
scattering oA' a proton target is

II „,,(p, q) = d'ge'~ ~([q„(g),J,(0)]).

Taking the Bjorken limit, q ~, q
+ fixed, and

evaluating the commutator to zeroth order in a, (i.e., us-

ing free-field theory) gives

Q oo

F (x ) —
dg

—
e

—txM( /J2
8g 4 —oo

x (tlt(g ) y+ tlt(0) —y(0) y+ tlt(g )) .

The singularity as g 0 is a c-number and does not
contribute to the connected matrix element. The struc-
ture function F ~

can also be computed using the parton
model. To lowest order in a„gluonic partons do not
contribute. The F~ piece of the y*q hard-scattering
cross section erg is B(x —I)/2 for quark or antiquark.
This is equivalent to the statement that all the coefficient
functions in the operator-product expansion are 1 to
lowest order, since the moments of a 8 function are 1.
Therefore, the structure function F~ =8~8(q+q) im-

plies that the distribution function (q+q)(x) =2F|(x).
Defining projection operators P —= —, (I + a ) = —,

'
y+ + +x y

—and y —=P —
y, one gets

(q+q)(x) = d& e '-" ' ' '((tlt+)'(& )tlt+(0) —(y+) (0)y+(& )).
2%2m

"

The first term is the quark distribution

(2)

q(x) = d& e ™~~2((ttr+)'(& ) tlr+(0))1

and the second term is the antiquark distribution

It is easy to show that

q(x), q(x) )0, q(x), q(x) =0, ~x~ ) 1,

q( —x) = —q(x), q( —x) = —q(x) .

(3)

q(x) = d& e " ~ t '(tlt+(g )(tlt+)'(0)). Iq, qI do not vanish for x (0. It is convenient to work
with this convention for the distribution functions, since
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~„(q+q) =— dxx" '(q+q)
4 —oa

' n

(y(i&+)" 'y+y)
2 M

(4)

using Eq. (3). This is the same result as obtained by a

jq, qI then have definite charge-conjugation properties,
and are simply related to light-cone correlation func-
tions. lq, q1 for x (0 are (up to a sign) the distribution
functions for an antiproton. The even moments are

direct application of the operator-product expansion.
We have seen above that the moments of the hard cross
section Bq+ give the coefficient functions in the
operator-product expansion. Equation (4) implies that
the moments of the parton distribution functions are the
matrix elements of local operators. The parton distribu-
tion functions can also be used to find the odd moments
of F~. However, the trick of extending the integral to
negative x cannot be used in this case, and the odd mo-

ments of F| cannot be expressed as the matrix element
of local operators.

The gl structure function can be computed in a similar
manner,

gl(x)= d& e "~~ ' '(P(( )y+y5y(0)+y(0)y+y5y(& )). (5)

The gl piece of the y q hard-scattering cross section is + + 8(x —1)/2 for a right- (left-) handed photon and a right-
(left-) handed quark or antiquark. This implies that hq+dq =2gl(x), where qp (qg) and qL (qL) are the probabilities
to find right- and left-handed quarks (antiquarks) in a polarized proton, and d, q =qg —

qL, etc. In addition to the P—
operators introduced above, define two additional projection operators P = —,

' (1 ~ y5). (P ',P —] =0, so one can
define fields which are simultaneous projections, y — =P Py. —Using this, one can write the parton distributions

and

Aq(x) = „d& e '" ((y+ ) (& )y+ (0) —(y+ ) (& )y+ (0)),
2 7r"

aq(x) = 1

2

which are the probabilities to find a net quark (antiquark) polarization in the proton. Note that L and R are inter-
changed between hq and hq because y annihilates left-handed quarks and creates right-handed antiquarks.

It is easy to show that the distribution functions vanish for lxl ) 1, and

q(x)~ l&q(x)1~0, q(x)) l&q(x)1~0, &q( —x) =&q(x), &q( —x) =&q(x).

The odd moments of g~ are given by

' n

~„(aq+Zq) =— dxx" '(aq+aq) =— (y(irl+)" 'y+ysy),4 —oo 2 M

which agrees with the operator-product expansion. The gluon distribution functions can be defined using obvious gen-
eralizations of Eqs. (2) and (5). Let us defined the gauge-invariant distributions

xg(x) = — d( e '" '(G+'(g )G.+ (0)+6+'(0)Ga+ (g )),
2 Mz

and

xag(x) = dg e '" ~ (G+'(( )G (0) —G+'(0)G (g ))4 (7)

where 6"' is the gluon field strength, and a sum over
color indices is understood. Note that

! + 0.

lim xg(x)&0, lim xAg(x) =0,
x 0 x 0

so that the first moment of hg(x) exists, but that of
g(x) does not exist. Define the polarization vectors
R =(0, —1, —i,0)/J2 and L =(0, 1, i,0)/J2 The s—um.
over a = +, —,R,L only involves a =R,I. since G ++

G +aG + (G +R) tG +R+ (G +L) tG +L

iG + G + (G +R) tG +R (G )t+G1+1
using R = L, L = —R. Thu—s g(x) can be interpret-
ed as the probability to find a gluon in the proton with
momentum fraction x, and hg(x) as the probability to
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find a right-handed gluon minus the probability to find a
left-handed gluon. These distributions vanish if txt & 1,
and satisfy g(x) ) tAg(x) t

)0, g( —x) = —g(x),
hg( —x) =g(x). M„(g) for n even and M„(hg) for n

odd, n ) 1, are related to the matrix elements of gauge-
invariant local operators,

& n

M (g) = (G+~(&()+)&—zG+)a

' n

M. (~g) =— (G "(ia')" 'G.'), n»,

function. There is no reason to expect such a term for a
confining theory like QCD. Thus Eq. (7) is the pre-
ferred definition of hg.

The moments of the quark and gluon distributions can
be expressed as matrix elements of gauge-invariant,
Lorentz-covariant, twist-two operators. The light-cone
method naturally gives the + . + component of these
tensors. [Nonlocal operators such as y(g) y+ y(0) have
to be written in general as

y(g) y P exp ig A„(x)dx" y(0) .

which is also the result obtained from the operator-
product expansion. Any other definition of dg must
satisfy Eq. (8), so it can differ from Eq. (7) only by
XB(x) for some constant X. There is no 8(x) singularity
in the definition Eq. (7), because that would imply a (-
independent constant in the gluon-gluon correlation

ln light-cone gauge, A+ =0, the Taylor-series expansion
of this operator gives Eq. (4).] There is no gauge-
invariant local operator corresponding to the first mo-
ment of Ag in the operator-product expansion. This does
not imply that the first moment of hg is zero. We can
use Eq. (7) to compute the first moment (often denoted
r):

r=M, (~g) =
4p dxkg(x) =—„dxdg(x) =

J dg g(g )(G+'(g )G,+ (0) —G+'(0)G, (g )), (9)
4iZM

where e(z) =1 if z & 1, and —
1 if z ( 1. This expres-

sion can be further simplified in light-cone gauge if one
ignores surface terms and integrates by parts,

r = —
—,
' (JZ/M)(K'),

where K" is defined by B„K"=GG. Thus K+ can be
identified as the operator that corresponds to the first
moment of Ag, provided the gauge-variant correlation
function (A'(g )G,+(0)) vanishes as ( ~ when
evaluated in light™cone gauge. In the remainder of this
paper, (K+) will be used as an abbreviation for Eq. (9).

The complications of an interacting field theory have
to be dealt with at first order in a, . The moments of the
structure functions can be written schematically as

M„(F,,g, ) -c."'(8."')+c„"'(8„"'),

where, as usual, the equation holds only for even mo-
ments of F) and odd moments of g(. c„are the
coefficient functions, and 8„are twist-two quark and
gluon operators. At order a„ the quark and gluon
operators mix, and need to be renormalized. The renor-
malization conventions used are arbitrary, but the exper-
imentally measured structure functions F i and g 1 do not
depend on these arbitrary conventions. Since c„~ starts
at O(a, ), the gluon distribution is needed only at O(1)
and is unambiguous. The quark distribution, however,
needs to be determined to O(a). Let 6„' and 8„be
the matrix elements of quark and gluon operators in a
particular subtraction scheme. Then one can define the
quark and gluon operators in another subtraction scheme

8'"'=6"'+a ) 8"' 6'"'=6"'+a r 8"' (10)

using c„=1 to lowest order. We have already seen that
the coefficients c q' and c g are to be identified with the
hard-scattering cross sections 8~+ and a~+, and G„and
8(g with the distribution functions. Therefore Eqs. (10)
and (11) imply that pieces of the hard-gluon cross sec-
tion can be shifted into the quark distribution, and vice
versa.

This ambiguity can be seen directly using factoriza-
tion. As discussed in detail in Refs. 1 and 4, the total
cross section to order a, can be written as

(TP(x, g', M) =erg (x,g', p) q(x, p, M)

+ay (., g', »eg(x, p, M)

To identify the hard y*g scattering cross section, one can
apply factorization to the full y*g scattering cross sec-
tion

agr*(x, g', M) =of (x,g', P)(3f qi(gx, ,PM)

+a/(x, g,p)(g)fgig(x, p, M) . (12)

To O(a, ), we can replace fgig by its lowest-order value
6'(1 —x). Thus we can solve Eq. (12) to find

where k„and r„are arbitrary constants. The coefficients
in the new scheme at O(a, ) are given by

i(tq) (q) i(g) (g) )„8(q)
Cn

—
Cn ~ Cn

=
Cn as n n

ag(x, g, p) =a/(x, g,M) —crq"*(x,g,p) Sfqig(x, p, M),
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and

op+(x, g, M) =ciq (x,g, p) Sq(x,p, M)+os+(x, g, M) Sg(x,p, M) —tTq"*(x,g,p) Sfqts(x, p, M) Sg(x,p, M) .

The last term can be interpreted either as a correction to

q or as a correction to crs, since fS(gSh) =(fSg)
tsh. This is not quite correct because the infrared
dependence in the last term cancels the corresponding in-

frared dependence in a~~ to produce the hard cross sec-
tion erg of Eq. (13). However, any infrared-inde-
pendent piece can be included in either o~ or q; i.e. , we

always have the freedom to make the redefinition

q'(x, P,M) =q(x, P, M) Sfqls—(x)Sg(x, P,M),

Bs~(x,g', p) =os~(x, g', p)

+crq~(x, g', p) Sbfqis(x),

(14)

which is the same ambiguity discussed earlier using local
operators. There is no canonical way to fix this ambigui-
ty. The ambiguity [to O(a, )] is only in the quark distri-
bution and ciq+; there is none in either the gluon distri-
bution or the experimentally relevant quantity gi. Any
experiment that measures the gluon polarization will

determine hg as given by Eq. (7), with first moment Eq.
(9).

What about I =Ml(gl)? In QCD, I =(yy+ysy). '
yry+ysy does not mix with gluon operators, so there is

no renormalization ambiguity, and one gets I =Ml(hq
+hq). The parton model is not limited by any connec-
tion with local operators, so one is free to make the
redefinitions Eq. (14), so that I =Mi(hq')+Mi(8f)
xM|(hg), using Ml(erg ) =I to lowest order. The ad-
ditional freedom arises in the parton model because
"hard" (in the sense of factorization) is not equivalent to
"local" (in the sense of a local gauge-invariant opera-
tor). The prescription of Refs. 6 and 7 corresponds to
Mt(8f) = —a, /2tr, and of Ref. 8 to Mi(8f) = —a, /4tr.
Both results for Mi(bf) are equally "correct"; there is

no unique and unambiguous "anomalous gluon" contri-
bution. Any parton-model explanation of the gi problem
that relies on a particular value for Ml(8f) is clearly in-

complete. The natural choice for the quark distribution
from the QCD viewpoint is to use I =M i (hq), which re-
tains the connection of the distribution function with

gauge-invariant local operators. In any case, a recent
lattice calculation' indicates that (3a, /2 rt)M i (Ag)
~0.05, and cannot play a significant role in the proton
spin problem.
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