
VOLUME 65, NUMBER 20 PHYSICAL REVIEW LETTERS 12 NOVEMBER 1990

Conformal Invariance at a Deconfinement Phase Transition in (2+ 1) Dimensions
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The conformal dimension of the Polyakov line at the deconfinement phase transition of (2+1)-
dimensional SU(2) lattice gauge theory is determined numerically using two-dimensional finite-size con-
formal field theory. Excellent agreement with two-dimensional Ising-model values is found for both the
renormalized coupling on a spatially toroidal geometry and the conformal dimensions on a finite-width
strip geometry.
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Ideas of scale invariance and conformal symmetry
have proved to be strikingly powerful tools in the
classification of two-dimensional phase transitions with

infinite correlation length (see, e.g. , Ref. 1 for a compila-
tion of recent papers, and other references therein). Ba-
sically only one number, the conformal anomaly or cen-
tral charge c, is needed to characterize a given universal-

ity class. Scaling dimensions of all possible operators,
and hence in statistical-mechanics terminology all criti-
cal exponents, then follow.

These extraordinary developments in the study of
two-dimensional systems of infinite volume have been ex-
tended by Cardy and others ' to more realistic systems
of finite spatial extent. By a conformal mapping from
the entire plane onto the surface of, for example, a
cylinder of circumference L, it was found that confor-
mal symmetry completely determines, e.g. , the two-point
correlator even on this finite geometry. Specifically, the
conformal dimensions x, of the operators can be deter-
mined directly, and the correlation length along the
infinite direction is also given explicitly. This provides us
with an exact finite-size scaling theory, provided the as-
sumption of conformal symmetry at the critical point is

fulfilled.
The knowledge acquired about two-dimensional phase

transitions through the use of conformal field theory may
have ramifications in many different areas of condensed-
matter physics (e.g. , boundary-layer phenomena, etc.).
It will also, as we show in this Letter, have consequences
for the study of finite-temperature gauge theories in

(2+ 1) dimensions. To see this, consider a lattice-
regularized SU(2) gauge theory of action

S =P g (TrUp+TrUtt) (1)
plaq

in (2+1) dimensions. Here P=4/g, and Up denote the
oriented plaquette variables in each of the three planes.
Finite temperature is introduced in this Euclidean field

theory by imposing periodicity in the temporal direction,
the periodicity being N, lattice units. The temperature is
then T= I/N~, where a is the lattice spacing. We work
with an isotropic lattice, and choose units such that

(y(r()tt(rz)) = ~r)
—

r2~ ", (2)

where x is the conformal (scale) dimension of p. Intro-
ducing complex coordinates z on the plane, and express-
ing p(r) in terms of these coordinates instead, i.e.,

tt(r~) =P(z~, z~), one makes a conformal mapping z w,

w =(L/2tr)lnz of the full z plane onto the surface of a
cylindrical geometry. Writing ~ =u+iv, where u mea-
sures the distance along the infinite direction of the
cylinder, and v measures the distance around the period-

a = l.
At a certain critical temperature T, (or, on account of

3D cutoff' scaling, a certain critical coupling P, ) this

gauge theory undergoes a deconfining phase transition.
Careful numerical studies have indicated that in this par-
ticular case the phase transition is of second order.
The universality arguments of Svetitsky and YaA'e'

then indicate [since the center of SU(2) is Z(2)] that
this phase transition should belong to the Ising fixed

point one dimension lower, i.e., in d =2 dimensions.
If correct, the universality argument would imply that

the finite-temperature deconfinement phase transition of
this SU(2) lattice gauge theory in (2+1) dimensions
can be analyzed in terms of a conformal field theory in

two dimensions. In particular, the exact and universal
finite-size scaling result in two dimensions can then be
used to extract all pertinent information about the criti-
cal behavior of this phase transition, using with advan-

tage what is normally a limitation of numerical simula-
tions to systems offtnite spatial extent In stu.dying the
finite-size scaling around this phase transition we check
simultaneously and in a highly nontrivial manner both
the universality arguments of Svetitsky and Yaffe and
the recent results stemming from the study of two-
dimensional conformal field theories. We find it remark-
able that two such seemingly disparate phenomena can
be brought together in this fashion.

To begin, we briefly recall the finite-size scaling result
of Cardy. Assuming conformal symmetry at the critical
point, the two-point correlation function of a scalar
operator p(r) can be normalized such that
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ic direction, the result can be given in a closed form:

(2~/L ) '-"
(y(u, , v, )y(u2, v, )) =

[2 cosh[(2x/L)(u! —u2) l —2cos[(2z/L ) (v! —vq)]J"
(3)

In the particularly interesting limiting case ~u! —
uz~

» L/2' one finds a simple exponential falloff',

(p(u[, v! )Q(u2, v2)) (2z/L) 'e (4)

which explicitly gives the form of the correlation length
along the cylinder

g =L/2nx (5)

in terms of the radius L/2z and the conformal dimension
X.

%e are interested in the correlation among Polyakov
lines, closed gauge-invariant quark loops winding around
the lattice in the (also periodic) temporal direction:
W'(u, v) = —,

' Trg, Up(u, v, r), where Up(u, v, r) denotes a
timelike link at position (u, v, z). We choose the periodi-

city in the temporal direction to be N, =2. As for the
spatial sizes, we want to simulate relatively small values
of the width L, and we want to mimic as closely as possi-
ble an infinite length in the orthogonal direction. As a
compromise between the cost of computer time and the
demand for a large extent in this other direction, we have

chosen lattices of sizes 60 x L x N„with L =8, 12, 18,
24, 30, N, =2. The limitation to L ~ 8 was chosen in or-
der to avoid very-short-distance lattice artifacts. "

In order to proceed, we must first determine the
infinite-volume critical coupling P, (~) corresponding to
N, =2. To do this, we have initially performed Monte
Carlo simulations of this SU(2) lattice gauge theory on
square lattices (with periodic boundary conditions) of
sizes N &N„with N, =2 and N =10, 30, 40, and 60.
We have used the Metropolis algorithm for SU(2), with

four hits per link and typically 30000-60000 sweeps per
point in order to determine for each finite size the
almost-critical behavior. The general finite-size scaling
theory" can be used to determine P, (~). One particu-
larly convenient method is to construct the renormalized
coupling g„defined in terms of the normalized fourth-
order susceptibility, "
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on the given universality class. ' It follows that
g„(P,N ) away from the infinite-volume critical point
should be a universal function Q of the form

g, =Q(hPN'l'), where hP—= (P —P, )/jg„. We show a test
of this conventional finite-size scaling in Fig. 1. Note
that g, is bounded from below by the value —2. This
corresponds to completely aligned Polyakov lines, i.e., to
the totally broken phase, as can also be seen from the
figure. From our numerical simulations we find

g, =—g, (p, ) at the critical point: g„=—1.69+ppp66, where
the errors indicate our 95% confidence level. If we ex-
tract data from a related finite-size analysis of the same
theory on lattices with N =4, we find g, = —1.65, in

nice agreement with our present findings. This universal
amplitude ratio can itself be computed on the basis of
conformal field theory. ' A (conformal) Schwarz-
Christoff'el mapping is made from the full complex plane
to an arbitrary rectangle, with the resulting elliptic in-

tegrals being evaluated numerically. Knowledge of the
full four-point correlator is of course also needed, but
this has for the case of the Ising fixed point been com-
puted earlier. ' For a geometry of square lattices with
"partially periodic boundary conditions" (see Ref. 17 for
the precise definition) the Ising universality class corre-
sponds to g„= —1.67 ~0.02. Our number quoted above
is in remarkably close agreement with this result.

g, (P,N )=g(P, N )/N'(g"'—(P,¹)l', (6)

and search for the P value at which g, (P,N ) =g, (P,N')
In the limit N ~ this is easily shown to converge to a
unique answer. Deviations at finite volumes are due only
to subleading corrections, and it still provides a quite ac-
curate determination of P, (ee). ' For these N, =2 lat-
tices we find P, =3.397-+pp24 on the basis of the accumu-
lated statistics referred to above. ' Although this deter-
mination of P, (~) may appear to be afflicted with a fair-

ly large error, it is, in fact, for our purposes of absolutely
suScient accuracy.

Interestingly, already the renormalized amplitude ra-
tio (6) converges to a universal number, depending only
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FIG. 1. The amplitude ratio (6) as a function of the scaling
variable APNo'~" for square lattices of toroidal boundary condi-
tions. For % this should approach a universal scaling
function.
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FIG. 2. The correlation function I for SU(2) Polyakov

loops along the longitudinal direction of the cylinder, here for
L 8 and P=3.40. The coordinates u~ —u2 refer to the dis-

tance along the cylinder. The fully drawn curve is a least-
squares fit by the form (3), giving x=0.127-+8/6. The Ising
value for d =2 dimensions is x =

8 =0.125.

Having determined P, (~) from this extensive
(toroidal-geometry) finite-size analysis, ' we now change
the geometry back to that of the strip. We first keep the
width L axed, and measure the two-point correlation
function of Polyakov loops along and across the strip.
This mainly tests the expression (5) for the correlation
length along the cylinder but of course fully incorporates
the nontrivial structure of the exact analytic form (3).
In order to see the stability of our results towards small

deviations from the exact infinite-volume transition tem-

perature, we choose to consider a sequence of couplings,
P=3.39, 3.40, 3.41, and 3.42 and, for the 60X8 lattice,
also P=3.36 and 3.38. A least-g fit for L =8 at
P=3.40 gives the conformal dimension of the Polyakov
loop x =0.127-+oii26. In terms of the more conventional-

ly used critical exponents, this corresponds to q=2x
=0.254, or, by use of the hyperscaling relation
(2 —ri)v=y, y/2v=l —x. The two-dimensional Ising
value is x =

&
=0.125.

In Fig. 2 we show an example of the correlation mea-
surements, here chosen solely along the length of the
cylinder, and just for the case L =8 quoted above. The
fully drawn curve corresponds to the best fit referred to
above.

We can now directly observe how stable our results
are for changes in P around the infinite-volume critical
coupling P, . Choosing again L =8, we perform cor-
responding fits for P =3.42, 3.41, 3.40, 3.39, 3.38,

0.127—o.o26, 0.129-o.o27 0 114—o.oi i and 0.173-0.023

spectively. We see that apart from the trial runs at
P=3.36 and 3.38, the spread in the obtained values is
well within the expected statistical error, indicating that
deviations at this level from not being exactly at the crit-
ical fixed-point Hamiltonian are insignificant.

A determination of the conformal dimension x for oth-
er values of L yields the numbers shown in Table I. For
clarity, we have also included the results for L =8. Since
we clearly must demand that L is much smaller than the
longitudinal extent of the cylinder, we expect the devia-
tions from the exact form (3) to grow as L increases,
and, in particular, it would be surprising if even for
L =30 we could obtain a good fit. But as can be seen
from the table, in all cases the agreement with the 2D Is-
ing value x = —,

'
is quite good. The results nicely scatter

around this value. The results shown in Table I corre-
spond to all data included. Better fits with smaller errors
can be obtained by making short-distance and large-
distance cuts, thus reducing the effects of a finite length
in the longitudinal direction and short-distance lattice ar-
tifacts. '

By compiling all our results for L =8, 12, 18,24, 30, we

can also simultaneously determine the dependence on L,
and hence compare with the full form of Eq. (3). Since
the L dependence can be viewed as arising independently
from the numerator and the denominator of Eq. (3), we

have decided to make two independent determinations of
x (from the denominator) and 2x (from the numerator).
A least-g fit combining all these data and comparing
with the expected exact expression (3) gives x
=0.127-+o oo9 (from the denominator) and 2x
=0.276-+ooi4 (from the numerator). The fact that these
two determinations of x agree so closely is yet another
nontrivial test of the expected behavior (3). The overall
normalization is of course an unknown, since we have not

TABLE I. Numerical results for the conformal dimension x of the Polyakov line in this
(2+ I)-dimensional SU(2) lattice gauge theory at finite temperature.

12 18 24 30

3.39
3.40
3.41
3.42

0.129-+8/i
0.127 +8 83,'
o. los-8.8/6

o. 129+885'

0. 192'8834
o. 12s '8 N)
0.107-+8%3
0. 126 -+8 834

o. 1 s 7+8 83»'

0.082'88', )
o. 172 '88l8
0. 12g 85&4

o. 192-'88l9
0. 159-+881(
0.143+-8858

0.102'856

o. l lo 8/8
0.177-'8 86o

o. 1 s4'8 g',

0.133 '8 g)
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attempted (and have no need) to normalize the infinite-
volume two-point function.

independent fits can also be made to finite-size suscep-
tibility, for which an exact result clearly can be derived
once the two-point correlation function is known. We
will present results for this, and other extensions of the
present study, in a subsequent publication. '

Finally, we would like to note that these results in no
way are restricted to this specific gauge group. By
universality the method should apply to any (2+1)-
dimensional finite-temperature gauge theory with a
diverging correlation length at the deconfinement phase
transition point. Of course, the conformal dimensions
will in general be different. More details will be present-
ed elsewhere. '
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