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We report full QCD simulations on a 16°x4 lattice. For two degenerate flavors no finite-temperature
phase transition is found for quark masses of ma =0.01 and 0.025, where a is the lattice spacing, while
for three degenerate flavors a first-order transition is easily seen for ma =0.025. Nature, with nearly
massless up and down quarks and one heavier strange quark, lies between these two cases. For
my 4a =0.025 and m;a =0.1 we find that mx/m,=0.46(1) and that no transition occurs, calling into

question the existence of a QCD phase transition.
PACS numbers: 12.38.Gc, 11.15.Ha, 11.30.Rd

One of the most dramatic predictions of quantum
chromodynamics (QCD) is the creation of a plasma of
quarks and gluons when the QCD vacuum is heated to a
temperature of a few hundred MeV. This significant
temperature dependence of the QCD vacuum may well
have observable consequences for heavy-ion collisions
and the evolution of the early Universe. Although the
quark-gluon plasma and the low-temperature QCD vac-
uum are very different in structure and are usually pic-
tured as being separated from one another by a deconfin-
ing (or chiral-symmetry restoring) phase transition, no
formal arguments require such a transition to exist for
finite quark mass, and a number of QCD simulations (on
coarse lattices) show that no transition occurs for
moderately massive quarks.' It is an open question
whether real-world QCD with nearly massless up and
down quarks and a rather light strange quark has a
finite-temperature transition. We report here that on
unphysically coarse lattices Monte Carlo calculations
with nearly realistic quark masses show no such transi-
tion.

Under the assumption that at low temperature QCD
both confines and spontaneously breaks chiral symmetry,
theoretical arguments constrain the QCD phase transi-
tion for infinite and zero quark mass. Proofs on the lat-
tice that at high temperature the Z; symmetry of pure
gauge QCD breaks spontaneously, signaling deconfine-
ment,? and the chiral symmetry of QCD with massless
quarks is restored, show that the high-temperature sys-
tems realize exact symmetries differently than assumed
at low temperature, requiring the occurrence of a phase
transition. Furthermore, these symmetries imply that
the pure SU(3) gauge transition should be first order,*
and that the zero-mass transition, although possibly
second order for two massless flavors, should be first or-
der for the number of flavors (V) three or greater.’

So far, these expectations have been borne out by
lattice-gauge-theory calculations. In particular, four-
flavor simulations with four and six temporal lattice
spacings (V,) show a first-order transition when the
quark mass is either sufficiently large or sufficiently
small.! The four-flavor calculations also illustrate an

important effect of massive quarks—they can eliminate
the transition. Because the relevant symmetries are ex-
plicitly broken by quarks with finite mass, symmetry ar-
guments no longer imply the existence of a transition,
and indeed for four flavors of intermediate mass the
low-temperature QCD vacuum evolves continuously into
the quark-gluon plasma with increasing temperature. '

As a step towards determining whether real-world
QCD has a finite-temperature transition, we have per-
formed a series of Monte Carlo simulations on a 163x4
lattice with two and three flavors of light quarks. In Fig.
1 we summarize our results by charting the values of two
masses— those of the strange quark and the degenerate
up and down quarks— for which a transition occurs for
some temperature. Figure 1 is in part conjectural; it rep-
resents our proposal for the simplest such diagram con-
sistent with established results. The upper border of the
diagram corresponds to two degenerate flavors. Our cal-
culations suggest that two massless flavors have a
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FIG. 1. Presence and absence of the finite-temperature

QCD phase transition as a function of m, 4a and ms;a. Mass
values for which the transition is and is not seen on a 163x4
lattice are denoted respectively by solid circles and squares.
The physical point, indicated roughly by the dashed circle, lies
in the region of no transition.
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second-order transition that is washed out by any finite
mass. In contrast, three light flavors show a first-order
transition that is absent for larger mass. We therefore
expect that for light up and down quarks there is a
strange-quark mass below which the transition is first or-
der and above which no transition occurs. Where does
the mass of the physical strange quark lie? For N, =4
we conclude that the physical strange-quark mass is
close to, but above, the mass at which the transition dis-
appears. We emphasize, however, that because N, =4 is
far from the continuum limit (which requires N, =10
for pure gauge QCD), significant changes are expected
to occur in the physical a— 0 limit.

The calculations reported here used the dynamical fer-
mion R algorithm of Gottlieb et al.,® and ran for about
six months on the 256-node Columbia machine, a 16x 16
grid of fast-array processors, at a sustained speed of 6.4
Gflops.” The algorithm evolves the gauge fields with
respect to the action

S=41BY RetrUp— § N, 4Indet(D+m, 4a)
P

— + N;Indet(D+m,a),

where Uy is the product of the link matrices forming the
boundary of the elementary plaquette 7. Because of fer-
mion doubling the massless Kogut-Susskind Dirac opera-
tor, given by

(D¢)n = ;— Z Nn,u (UJ.p¢n+p —U, —p,u¢n —u) s
u

where U,, and 7,, are the link matrices and Kogut-
Susskind sign factors associated with the link at site n
with direction u, corresponds to four flavors of quarks.
The factors of § in the action “fractionalize” the dou-
bled fermions so that setting /V, =2 and N; =1 yields
two degenerate flavors of mass m, 4 and one of mass m;.
Although this action reproduces continuum N,-flavor
QCD order by order in perturbation theory, the fraction-
al fermion determinant cannot be obtained by integrat-
ing quarks out of a theory with local interactions. Thus
these calculations can be interpreted as describing four-
dimensional classical statistical mechanics with a local
Hamiltonian or three-dimensional quantum statistical
mechanics with a well-defined transfer matrix only in
the a— 0 limit. The algorithm introduces errors of
O(A7%)—we use a step size (normalized as in Ref. 6) of
A7r=0.0078 for the N;=2, ma=0.01 runs, and
At=0.01 for the others. We use a conjugate gradient
stopping condition of (r%/V)"2=8x10"%, in the nota-
tion of Ref. 8. In all cases the molecular-dynamics “mo-
menta” are randomized after trajectories of % units of
time; measurements are performed on the gauge config-
urations obtained after each trajectory. We denote by
¥y the quantity X, h*[(D+m) ~'); ,h, averaged over
three sets of A,’s for each gauge configuration, where for
each site n, h, is an independent complex three-vector
of Gaussian random numbers normalized such that

2492

(Xalhal D =1.

Evidence that the transition is first order for three
flavors with ma =0.025 is shown in Fig. 2. Two indepen-
dent evolutions of wyy as a function of molecular-
dynamics time are shown for $=5.132. The run begun
with an ordered lattice (U, ,=1, initially) displays ap-
proximate chiral symmetry. The disordered start (U, ,’s
chosen randomly) remained in the phase of broken chiral
symmetry for about 2500 units of time, tunneled to the
symmetric phase, and then appears to have tunneled
back at the end of the run. We also have ordered and
disordered runs at 8 =5.13 where the chirally symmetric
phase tunnels after 1500 units of time and at B =5.135
where the disordered start gradually evolves into the
symmetric phase over a period of nearly 1500 units of
time. For f=5.13 and 5.132 one sees a two-state signal
with (yy)=0.24 for the asymmetric phase and
(yy) == 0.13 for the other. For =5.135 only the sym-
metric phase can be identified. These results agree with
earlier work on 4>x4 and 8°x 4 lattices.”'°

Calculations with Ny=2 and the same mass of ma
=0.025, however, showed no evidence for a first-order
transition— no metastability or two-state signal was ob-
served. We then lowered the mass to ma =0.01. Or-
dered and disordered starts at $=>5.25 both relaxed in
less than 100 time units into a chirally asymmetric state
while similar starts for 8 =5.275 each relaxed into the
symmetric phase in less than 200 time units. We then
performed the long run at f=5.265 shown in Fig. 3.
Large fluctuations and long correlation times are evident
but again no two-state signal is seen. Figure 4 shows his-
tograms of these runs. The single-peaked structure of
each of the runs suggests that there is no transition for
these values of B, and the overlap of the histograms pro-
vides evidence that a transition at an intermediate value
of B has not been overlooked. Previous calculations for
ma < 0.05 are in conflict: Some on 8*x4 and smaller
lattices are claimed to show a transition,'®'" while other,
similar calculations'? and a recent, careful study of
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FIG. 2. Monte Carlo evolutions of yy for Ny=3,
ma =0.025, and $=5.132. The behavior of the ordered start
(solid) and disordered start (dotted) evolutions signals a first-
order transition.
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FIG. 3. Evolutions analogous to Fig. 2 for N,y=2,
ma =0.01, and 8=5.265. The two starts mix together without
clear tunneling events, indicating that no transition occurs.

ma =0.025 on lattices as large as 123x4 (Ref. 13) do
not. We argue that our 16°x4 results should resolve the
question, and conclude that a transition does not occur
for two flavors even with a mass as low as ma =0.01.

Next let us consider simulations with two light flavors
of m, 4a =0.025 and a strange quark with several values
of a heavier mass, m;a. Sets of runs for various values of
B performed at m;a =0.05 and 0.5 totaled 3800 and
7200 units of time, respectively. Although not definitive,
they strongly suggest that the smaller mass has a transi-
tion, while the larger does not. We concentrated our
efforts on the case m;a =0.1 with the results shown by
the evolution in Fig. 5. Although this run appeared to
relax quickly to the two metastable states seen for Ny =3
in Fig. 2, after 1000 units of time its character changed
and the remainder of the evolution shows no two-state
signal and gives an average for (¥, sv, 4) midway be-
tween the values found for the ordered and disordered
states. Thus, even for this light strange-quark mass, the
system resembles Ny=2 and has no transition, a result
that conflicts with earlier reports of a clear transition on
an 83x4 lattice'* and less compelling evidence for a
transition on a 123x4 lattice.'’

In order to provide a physical interpretation for these
quark mass values we have calculated hadron masses in
a separate 7 =0 simulation on a 16>x24 lattice with
B=5.171, m, qa =0.025, and m;a =0.1. We began with
an ordered start, discarded the first 450 time units, and
collected an additional 600 units of time, computing had-
ron propagators after every ¥ time unit trajectory. Ex-
cept for the use of an extended, Coulomb-gauge-fixed
source, our methods are the same as in Ref. 8. The re-
sults, shown in Table I, suggest that (a) the choice
B=5.171 is far from the continuum; the two kaons, for
example, should be degenerate, but differ in mass by a
factor of 2. (b) Using the calculation to establish a
physical length scale is difficult given the large discrep-
ancy between the mass ratio my/m,=1.5(1) obtained
from Table I and its physical value of 1.22. (c) The ra-
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FIG. 4. Overlapping histograms show that for two flavors of
ma =0.01 ¥y evolves continuously with g without developing a
two-peaked structure. From left to right, the histograms corre-
spond to =5.275, 5.265, and 5.25. Counts are in units of tra-
jectories, and have been scaled up by factors of 5 and 3 for
B=5.275 and 5.25, respectively. The first 500 trajectories of
each run were discarded.

tio mg/m,=0.46(1) is smaller than its physical value of
0.64, suggesting that the three-flavor, first-order transi-
tion disappears with increasing m; before the strange
quark reaches its physical mass. (d) Of possible concern
is the relatively large value of the pion mass shown in
Table I. However, in similar N, =4, four-flavor simula-
tions ma =0.025 lies well within the chiral limit,'® indi-
cating that the structure of the transition and mg/m,
should be nearly independent of m, 4.

Dynamical quarks strongly affect QCD thermodynam-
ics. The results presented here suggest that even the ex-
istence of the QCD phase transition depends on the pre-
cise value of the strange-quark mass. These results sup-
port the picture shown in Fig. 1 in which we identify re-
gions of m, 4 and m; for which a transition occurs. Our
calculations suggest that for N, =4 the point correspond-
ing to physical values of the quark masses lies outside the
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FIG. 5. Evolutions analogous to Fig. 2 for three quarks with
nearly physical masses show no transition. The two flavors for
which yy is plotted have m, sa =0.025, the third has m;a
=0.1, and §=5.171.
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TABLE I. A summary of the masses, measured in lattice
units, determined from our 16°x24, §=5.171 simulation. We
minimize, display in the table, and determine the errors from
27, using the full covariance matrix. The fits extend between
rmn and 12 units of lattice separation. The pairs (r,7),
(K,K3), and (p,p;) should each become components of degen-
erate flavor multiplets as a— 0. Chiral symmetry is partially
broken by the lattice and only protects the masses of the
lighter 7 and K.

mass Xa X T'min
n 0.4117(4) 4 8
m 1.09(8) 5 4
K 0.6367(2) 6 7
K, 1.34(3) 7 4
o 1.39(3) 16 4
P> 1.41(7) 9 4
N 2.07(12) 12 3

first-order region, and raises the question whether this
situation persists in the continuum limit, in which case
real-world QCD would not have a finite-temperature
phase transition.
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