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Braid of Strings
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Braiding on a string amplitude is sho~n to yield a Yang-Baxter relation in which the Koba-Nielsen
~ „'ables play the role of spectral parameters.

PACS numbers: 11.17.+y, 02.40.+m

The Yang-Baxter relation plays an essential role in

clarifying the interrelationship of various subjects in

physics and mathematics, such as solvable statistical
models, conformal field theory, knot theory, quantum

groups, and soliton theory. ' On the other hand, the in-

timate relationship between the string theory and the sol-
iton theory has been proved. Namely, the string ampli-
tudes satisfy Hirota's bilinear difference equation, a
discrete analog of the two-dimensional Toda lattice.
There has been, however, no argument which directly re-

lates the string theory to the Yang-Baxter relation.
Our purpose in this paper is to study the Yang-Baxter

relation associated with the braiding on the string ampli-
tudes. The string amplitudes were formulated such that
duality, the fundamental property of hadrons, is mani-

festly realized. Recently, many authors have discussed
this property in great detail within the framework of ra-
tional conformal field theory (RCFT), a very limited
version of the string theory, and revealed a deep connec-
tion of this property to the quantum group and the
Yang-Baxter equation. In spite of various successful re-

sults, however, this approach seems to require much fur-

ther elI'ort to explore the scope of the string model from
a field-theoretical point of view. In view of this, it will be
worthwhile to examine the string amplitudes themselves,
which embody duality in a simple expression, and see the
relationship to the Yang-Baxter equation. Therefore, in

contrast to the conventional argument on RCFT, we con-
sider the braiding of strings rather than their com-
ponents (primary fields). This will be achieved by the
use of three-string vertex operators. A simple expression
for the vertex operator given in an analytic form enables

us to study manifestly the duality properties of the string
amplitudes with external strings rather than external
point particles.

To begin with, we first consider an integrand of the
string amplitude for scattering of bosonic ground-state
particles (up to some measure factor) in the operator for-
malism:

F(Z I~Z2~ ~ ~ ~ i ZN )

=(01v(ki, zi) v(k2, Z2) v(kN, ZN)glo), (I)

where

V(k ) ihJt(z) . ihJt+. (z—) ikJt (z)

with the string coordinate X"(z),

(2)

X"+(z)=ip" lnz+ g a„" z
l

-~ Jn

X" (z) =x"+ g a„"z".1

-~ Jn

(3)

g in F denotes the vacuum operator with an arbitrary
number of loops. This amplitude (1) can also be regard-
ed as a correlation function of primary fields V(kJ, zJ)
whose conformal spins are given by —,

' kJ2. The Koba-
Nielsen variables, the z's, are radically ordered as
lzl I + IZ21 + ' + lzN l. In order to obtain the scatter-
ing amplitude one has to integrate (1) over z's as well as
over moduli.

If B; ~ denotes the operator which represents the
monodromy of the expression (1) when zJ moves from
the region lz;1& lz, l to lz, l

& lz;1 in the counterclock-
wise direction, it is graphically clear that

8 +)8J J+I 8J J+i8t, ;+i tf lt J 1
~ 2, —8i,,8;,h8, , h =8,, h8i, h8;,, if J =t + I, k =J + I (4)

These are the relations which characterize the braid group. If we call F(z ~, z2, . . . , z; —~, z;,z;+ ~, . . . , zN ) the s channel,
the u-channel amplitude in the operator formalism is given by

F„(z~,z , . .2. , z; ~,z;+t,z;, . . . , ZN) =(01V(k~,z~) . V(k, ~, z; ~)V(k;+~,z;+t)V(k;, z;) . V(kN, zN)g10), (5)

so that V(k; i,z;-~) and V(k;+~, z;+&) can be combined together to form resonances. So 8; J represents the s-u duality
of the string amplitudes.

From the change of the order of V's we gain a factor

V(k;,z;)V(ki, zJ) =R; JV(kJ, zJ)V(k;, z;),
where R; ~ is given explicitly as

im(zt —
zJ )k, kJ

R;& =e
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(7)
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R j is clearly an explicit representation of 8; j. Note
that the dependence of R; ~ in (7) on the variable z; —z,
is rather trivial.

Generally speaking, if the system has conformal in-

variance, each holomorphic piece of correlation functions
(a conformal block) forms a linear space. Monodromy
matrices which are independent of z's or moduli act
linearly on that space. Conformal symmetry is an im-

portant symmetry which provides us with exact solvabili-

ty of the system in general. But that symmetry is con-
sidered to be a stronger condition than needed for exact
solvability, because the braid relation described above is

a very special case of a more general Yang-Baxter rela-
tion with its dependence on spectral parameters sup-
pressed. We are interested in the departure from confor-
mal symmetry but keeping the exact solvability. One ap-
proach to this problem is to deform conformal field
theory (CFT) so as to get a Yang-Baxter relation instead
of a braid relation.

For this purpose we slightly modify the vertex opera-
tor (2) to

V(k . ) eikx+(z;p) ikx (z;p) (9)

where

X"+(z;p) ip" lnz+ g aP z "p",l

X" (z;p) x"+ g aPz "p",1

n I

(io)

with IpI ( l. Accordingly the braid operator is also
modified,

' k, kj
Zi P Z'

iJ
Zj P Zi

Let us specify (i,j,k ) to be (1,2,3) and write
In(z3/z) ) u, ln(z3/z2) v. Then the second equation of
the braid group (4) becomes the Yang-Baxter-like equa-
tion having the right dependence on u and v:

R (,2(u —v) R (,3(u) Rp, 3(v)

R2 3(v)R( 3(u)R( 2(u V) .

The spectral parameters are given by the Koba-
Nielsen variables of the strings. Notice that these vari-
ables are associated with the spectral parameters of the
inverse problem for soliton equations as is known in the
soliton-string correspondence. The generalization of the
vertex operator given by (9) is not unique at all. This is
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by using fX(z;),X(zj )] = —im(z; —zj ). Here s(z; —z~)
is the step function defined by

+1 Iz I& Iz I

e(z; —z, ) - 0, Iz;1=1z)1,

Iz I
( Iz I

one way of departure from the conformal symmetry, in

other words, departure from the critical point of statisti-
cal models recovering the spectral parameters. ' It is

interesting to notice that the same expression for the
modified string coordinate appears in the argument of a
q-deformed string. Moreover, we can show' that this
modification leads to a quantum deformation of the
Virasoro algebra, which has the structure of the Hopf
algebra.

Equation (12) depends on two independent parame-
ters. It is, ho~ever, not quite a nontrivial Yang-Baxter
relation since the vector space on which it is defined is a
tensor product of three one-dimensional vector spaces. A
nontrivial Yang-Baxter relation is usually defined on
V(3) V(g) V with dimV& 1.

In order to obtain a nontrivial relation we must go
beyond the scattering amplitudes of ground-state parti-
cles. Namely, we replace the vertex operator V(k;,z;) of
(1) by the three-string vertex operator: 6

W(K;,g;) —=:exp (~ X(g;(x))K;(z):. (13)1

2Ã Z

;&s; I W(K~, g;) ) 0&;, (i4)

where 1. &; denotes a state on which K; operates. The
transition amplitude of a spin eigenstate a to another
state b is calculated by further projecting (14) into such
states

(b I;&s; I W(K;,g; ) 10&; I a &, (is)

where 1. & is a state on which X operates. If the states a,
b, and s; are those of the primary fields, this vertex cor-
responds to the usual one of (b', ) type of CFT. Instead

Here K;(z) is an operator associated to the ith external
string and g;(z) is a certain analytic function regular at
z 0. If Y;(z) is the string coordinate of the ith external
string, the momentum distribution K;(z) is given by
K;(z) dY~(z)/dlnz. This operator has been known to
reproduce the Sciuto vertex" as we choose g;(z) 1 —z.
By adding a ghost contribution to it we can obtain a
physical operator which is free from spurious states. '

We are not going to discuss details of these complica-
tions in this paper, but study the analytic structure of
amplitudes given by the vertex operators of the form
(13). The conformal transformations change the form of
g;(z) analytically but nothing else. The duality property
of the string amplitudes is manifest in the operator for-
malism using the vertex operator (13).

The vertex operator (13) involves all possible interac-
tions of particles with various mass and spins in the sin-

gle expression. When K;(z) k;, the contour integral in

(13) becomes iX(g;(0))k; and W reduces to the vertex
for a ground-state particle, (2), with g;(0) z;. The in-

teraction of a string with a particle with some particular
value of spin s; is obtained by projecting W into such a
state:
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of dealing with such individual vertices with definite

spins, however, we will study the simple expression W it-
self. In other words, we consider the string states as a
whole.

In order to see the correspondence between our ap-
proach and the conventional one, we notice that if G(g)
denotes the operator which maps z to g(z), we can write

W(K,g) G(g) W(K, 1)G '(g) . (i6)
(a)

Then the propagator between the ith and (i + 1)th ver-

tices is given by G(g; 'g;+I) G '(g;)G(g;+I), which
is a generalization of the conventional propagator (z;+I/
z;) '. Therefore, the states of three strings interacting at
a vertex are specified by the operators K and G(g), or
equivalently E and g.

Let us now consider the braiding of strings. Namely,
we consider the integrand (1) but all V's are replaced by
$Vs. The ordering of the strings is specified by g;(0) z;
radically. The braiding R;~ of the two strings i and j
must describe the permutation of z; and z, . It is
achieved by mo~ing g; and g~ to g and gJ analytically,
such that the order of g (0) and gJ(0) is reversed (see
Fig. 1). After changing the order of the corresponding
W's we obtain

FIG. 1. (a) Unbraided strings. (b) Braided strings.

W(K;,g()W(K~, gj) ~ W(K;,g(')W(KJ, gJ) =R; ~W(K~, gJ)W(K;, g ),
where

2

-exp (~ (~ K (z)K, (w) ln
2x z ' w

' '
g,'(w) —p2g (z)

(i7)

(18)

Here we recall that it is sufficient to consider a Mobius

map for g;(z) to study duality properties of the string
amplitudes. The Mobius map is specified by three com-

plex parameters. For instance, it can be given by

g;(z)-
/z

a~

W(KI~gI ) W(K2~g2) W(K3~g3) R1,2
a~

Q2

W(KI~gI )W(K2~g2) W(K3~g3) R2, 3
Q2

Q2

R
a2

Q3

R
Q3

" a"
1

Comparing (21) and (22) we obtain the relation for R;, :

so that g;(0) z; is satisfied. We are now going to claim,
in the rest of this paper, that this triplet of the parame-
ters plays the role of the indices (b', ) specifying the ver-

tex of RCFT. This correspondence is quite natural as we

see from the structure of the vertex operator represented

by (16).
Equation (17) will not give any information if g and

t

gj are not correlated with g; and g~. Suppose, on the
other hand, the Mobius maps g; and g are dependent on
each other, and the corresponding parameters, say P; and

P, are related. Then R; j of (18) becomes a function of
I + ) ~a;, a; and aj, aj:

a; aj
Ri g Rij (20)

Q] Qj

(2i)

(22)

P; still remains as a free parameter. Note that we can
consider this R;~ as a matrix specified by the suffixes

(a;,aj) and (a, aJ). Moreover, integrations over a's and
P's are implied so that the amplitude remains projective
invariant.

Now we combine three successive braid operations in

two ways:

Q3 Q2 Q3

g R2 3 &t el W(K3~g3 )W(K2, g2 ) W(KI, gI )
Q3

'
Q2 Q3

a3 Q~ Q2„RI 2 „„W(K3,g3 )W(K2tg2 ) W(KItgI ) .

Q~

R)2
a~

Q2 a~ a3 Q2 Q3

) R ) 3 )) ) R 2 3 )) ))
Q2

'
Q~ Q3

'
Q2 Q3

Q2

=R23
Q2

Q3 Q~ Q3 Ql Q2

) R) 3 ) „R)2 )) I) ~

Q3
'

Q& Q3
'

Q& Q2
(23)
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In this equation R;~ is a function of z, and z, , the
Koba-Nielsen variables, which specify the order of the
strings. The dependence of R; ~ on these variables is not

as simple as the case of scattering of ground-state parti-
cles.

Equation (23) is the Yang-Baxter relation associated
with the braiding on the string amplitudes. Before end-

ing this paper we would like to emphasize that our result
is quite general in the sense that only duality, the proper-
ty which characterizes the string amplitudes, is used to
derive the Yang-Baxter relation. We could derive this
equation for any fraction g; of the ith vertex as long as it
is related to g of the vertex in another channel. We
have not even specified the relationship between g; and

g which connects two different channels, but the duality
is sufficient to derive the Yang-Baxter relation. The situ-
ation should be contrasted with the conventional argu-
ment of the duality in RCFT, in which a vertex operator
is specified by three states of primary fields. In RCFT
the duality appears as a rule under which a pair of pri-
mary fields belonging to two adjacent vertices are ex-
changed. It is well known that this rule is described by
matrices associated with modular transformation. The
corresponding results will be derived in our approach by
relating g; of one channel to g of another channel ex-
plicitly.
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