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Effective Action for Strongly Correlated Fermions from Functional Integrals
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The Hubbard model is investigated using functional integrals and a Hubbard-Stratonovich decomposi-
tion of the interaction term. Using a spin-space reference frame that fluctuates in time and space, the
effective action both is spin-rotation invariant and exhibits the correct Hartree-Fock saddle point. For
strong correlation the effective action for free carriers and spins coupled via a gauge field is obtained as a
systematic expansion in t/U The. spiral state existing for small doping is discussed. The formalism al-
lows straightforward generalization to intermediate and weak coupling.
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It hardly needs to be emphasized anymore that a
theoretical understanding of strongly correlated fermion
systems is of crucial importance for the interpretation of
the physical properties of high-temperature supercon-
ducting materials. ' Strong electron-electron correlations
also play an important role in heavy-fermion systems,
itinerant ferromagnets, and a large variety of other sys-
tems. The theoretical description of correlated fermion
systems is frequently based on the Hubbard model and
its generalizations. A standard method to treat interact-
ing many-body Hamiltonians is a Hubbard-Stratonovich
decomposition of the interaction combined with some ap-
proximate treatment of the resulting functional integral.
For the Hubbard model, however, this kind of approach
has not been very successful, in large part due to the ap-
parent impossibility to take into account properly spin-
rotation invariance, as briefly discussed below.

In the present paper I will show that the difficulties
with the functional-integral formulation can be overcome
using a spin-space reference frame that varies in time
and space. The fluctuations of the orientation of the
reference frame then allow for a rather natural inclusion
of spin-rotation invariance. As will be seen below, in the
strong correlation limit it then becomes possible to derive
microscopically the effective action for carriers doped
into a Mott-type insulator. Mainly based on phenome-
nological and symmetry arguments, effective actions
have been proposed previously, and the present ap-
proach then establishes the connection between these and
microscopic models.

To be concrete, in the following I will consider the
Hubbard model, but generalization to other models
should be rather straightforward. The partition function
can be represented as a functional integral over Grass-
mann variables,

Z = „2)e'(r)X)e(r)exp( —S),
where 0' is a Grassmann spinor defined at all lattice sites
at imaginary time z: +,=(y, ~, y, ~) . The action is

(2)

(P = I/T), with the Hamiltonian given by

H(e', e) = t g (%—",e, +O,'e, )+—g(n,' —s,', ).U
(fr') r

(3)

Most of what follows is independent of spatial dimen-
sion, but to be specific I consider the two-dimensional
case: (rr') indicates summation over nearest-neighbor
bonds on a square lattice, each bond being counted once,
and n, O, %', and s„=@,o, %', are the local particle
and spin (along z) densities, respectively.

A standard way to handle the interaction term in Eq.
(3) is the Hubbard-Stratonovich transformation, intro-
duced at each point in space and time:

exp — (n, —s.,)—z

dA, dd, exp ——(++5, ) +id, n, +d,s„nU~ U

(4)

Formally, it is then possible to integrate out the fermions
and to obtain an effective action for the fields A„A, . In
the saddle-point approximation one recovers the
Hartree-Fock approximation. However, the fluctuations
of 5, 6, around the saddle points are massive; i.e., the
low-frequency spin-wave modes which are crucial for the
physics of the model are not easily recovered. Alterna-
tively, one might write the interaction as (U/6)s, (s, is
the local spin-density vector), and then use a decomposi-
tion with a vector field h. The angular fluctuations of h,

then certainly are massless; however, due to the factor
U/6 the saddle point does not even reproduce the
Hartree-Fock results, certainly a very unsatisfactory sit-
uation.

As will be seen, a theory that in the saddle-point ap-
proximation reproduces Hartree-Fock and explicitly ex-
hibits the correct low-energy excitations can be con-
structed using a spin reference frame that varies in space
and time. For this purpose I introduce identities
1 =R,R, into (2), where R, is a SU(2) matrix,
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parametrized by a unit vector 0 which varies in time and space: R,o,R, = 0,(r) o [more precisely R,
E SU(2)/U(1) =S ]. Then

r P
S =„dr g%', R,R,"(8, p—)R,R, +,+H(+', 4)dp r

Now, introducing at each point in space and time an integration over 0,(r) with invariant integration measure normal-
ized to unity, and performing the unitary transformation @,=R, +„the action becomes

S(4,@,0) = „dr, g@,(8,—p+R, R,)4,+H(4, 4, 0), ,

H(4, @,0) = —t g 4, R,"R,@,+c.c. +—g [(@,4, ) —(4,"a,4, ) ] .
U

(rr') f

Because of spin-rotation invariance y,*ty,*~@,~y, t =p,*tp,*~&,~p, t, and therefore the spin-rotation matrices do not appear
in the interaction term in (7). Note that an f spin in the @ variables points along 0 in the original (laboratory) refer-
ence frame; i.e., in going from the +'s to the 4's there is a change from a fixed reference frame in spin space to a refer-
ence frame (or quantization axis) varying in space and time.

I now apply the scalar Hubbard-Stratonovich decomposition (4) to the Hamiltonian (7). In the saddle-point approx-
imation, this reduces to the Hartree-Fock results. On the other hand, the angular variables 0 explicitly appear in the
functional integral, and consequently the fluctuation spectrum around the saddle point does contain the low-energy
spin-wave modes.

As will be briefly discussed below, the fluctuating-reference-frame approach can be used for arbitrary U, e.g. , to ob-
tain the eA'ective nonlinear cr model for the antiferromagnetic state at half filling. Here I will concentrate on the strong-
ly correlated case. Then arbitrary variations of 0,(r) around the saddle point can be taken into account. For reasons
of simplicity it is convenient to choose the ferromagnetic saddle point A, p =id, p

= —U/2. One can then decompose the
total action as S =Sp+S&+Sb, where Sp is the action at the saddle point, 5& contains the contributions from the fluc-
tuations of 0, and Sq describes the fluctuations of 6, (b „=d 5 p):

pp
Sp = dr g4, R, R,4, —t g [4, (R,R, —1)4, +c.c.j

r &rr')

rp
Sb= dr+ [ —ib„(n, —1) —B„(s,+1)+U '(8„+8,„)].

r

I consider the case of more than one electron per site, so that Sp represents a completely filled band of J electrons
("lower Hubbard band" ) and a partially filled band of f electrons ("upper Hubbard band" ), but by electron-hole sym-
metry, the case of less than one electron can be treated completely analogously.

I now want to derive the eA'ective action for the physical degrees of freedom: fermions in the upper Hubbard band,
and spins represented by 0. This can be achieved by doing the trace over P~ and 8, , explicitly. The effective action
then is obtained as a cumulant expansion in diagrams connected by s, = f (lower Hubbard band) Green's functions.
This function is

Gp~(r, r) = —8( —r)e 'B(r) = —8(r )8(r)/U.

Consequently, to obtain the effective action to order (t/U), the cumulant expansion has to be carried to order n+1.
To zeroth order in t/U I find

S.tr =„dr.g [P,*(8,—p+U)P, —
—,
' iv, (1 —cosa, )(1 p,*P,)] —t g [a(—0„0,)P,*P, +c c ]., .

r (rr')

a(0„0,) =)a(e' "'=[(1+0, 0, )/2]' exp[id(0„0, , z)/2].

Here P refers to fermions in the upper Hubbard band, the spin index being omitted, p„0, are the polar angles of 0„
A(0 f 02 03) is the signed solid angle spanned by the vectors 0 ~, Qz, 03, and z is the unit vector along z.

In the absence of particles in the upper Hubbard band, in 5,& only the purely imaginary term remains, which is the
Berry phase of an isolated spin —,'; i.e., as expected, the half-filled Hubbard model becomes a collection of independent
spins for U=~. Introducing more fermions, two effects occur. (i) The factors 1

—p, p„previously introduced by
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Shankar from semiphenomenological arguments, cancel
the Berry-phase term whenever there is an extra particle
on site r; i.e., one is in a spin singlet whenever two parti-
cles occupy the same site. Here this effect is seen direct-
ly from a microscopic calculation. (ii) The kinetic-
energy term plays a role: In particular, going around an
elementary plaquette (1234) the lattice curl of the
phases g equals

@/234 [A(Q},Q2, Q3)+A(Q3, Q4, Q /)]/2,

i.e., there is an effective magnetic field proportional to
the solid angle spanned by A~, . . . , Q4. @)234 is the lat-

tice analog of the familiar winding-number density of the
continuum nonlinear a model. Note that, while the
gauge potential in (10) depends explicitly on z and
therefore is not rotational invariant, the physical fluxes
are. For coplanar configurations, @~234 0; i.e., the
phases can be removed by a gauge transformation of the
p's. One then sees straightforwardly that the kinetic
term is optimized by a ferromagnetic arrangement of the
spins. This is the familiar Nagaoka phenomenon.
Whether noncoplanar configurations of Q, with a non-
zero winding-number density can lead to an energy lower
than the Nagaoka state is not currently clear. '

The first-order contribution to the action is

S,a dt~ —g (2 —P, P, —P, P, )(Q, Q, —1)
2 (rr')

+ g [a(Q, i
—Q, )a( —Q, , Q,-)P, P,-+c.c.]+

~
g(1 —P, P, )Q, '.

(rr'r") 4t I'

Here r and r" are second- or third-nearest neighbors, and
the sum over r' is over all sites that are nearest neighbors
of both r and r".

In the absence of fermions in the upper Hubbard
band, only the p-independent part of the first term in S,'tr
contributes and represents the antiferromagnetic ex-
change interaction between nearest-neighbor sites; e.g. ,
in this case S,g+S,'g is the action of the antiferromag-
netic Heisenberg model. This model has long-range an-

tiferromagnetic order at zero temperature. Neglecting
quantum fluctuations completely, one then has 0, 0,- —1, and consequently one finds for the energy of one
extra electron q, =(4t /U)(cosk„+cosk~) . This ex-
pression has a degenerate minimum along t k~ t

= tr
—tk„t, as is well known from Hartree-Fock theory. One
should, however, notice that the inclusion of zero-point
spin fluctuations will immediately lift this degeneracy:
The kinetic term in S,tr contains contributions like
(Q, Q, )(Q, Q, ), and these averages will be different
according to whether r, r', and r" lie along a straight line
or not. This then may explain the minimum of cq at
(x/2, tr/2) found in numerical calculations.

In the presence of a finite concentration n of extra
electrons, one immediately sees the instability of the
Neel state: In the Neel state the term proportional to t
in S,g does not contribute. If, however, 0, 0,

—1+s, there is an effective nearest-neighbor hopping
of order t tet, and a corresponding gain of kinetic energy
of order —t tctn The loss of. exchange energy is of order
s; e.g. , a~0 is energetically favored for any nonzero n.
For an r-independent e one then finds a spiral, as pro-
posed by Shraiman and Siggia. Neglecting the quan-
tum fluctuations of Q, completely (i.e., in the Hartree-
Fock approximation) the magnetic structure can be
determined by numerical minimization of the total ener-

gy. With the spin lying in the x-y plane I find the op-
timal structure to be characterized by the azimuthal an-

t

gle p, =n(1 —b)(x+y), with 8 varying continuously as
a function of n and t/U (Fig. 1). As can be seen from
Fig. 1, at fixed t/U there is a continuous transition from
the antiferromagnetic (b =0) to the ferromagnetic
(b=l) state, via an intermediate spiral phase. As ex-
pected, this "unwinding" of the antiferromagnet into the
ferromagnet occurs more rapidly for strong correlation.
A number of comments are however in place: (i) In the
present theory the minimum of the single-particle disper-
sion in the antiferromagnetic state is along the lines

tk»t =tr —tk, t, not at isolated points. Consequently, the
direction of the spiral pitch is along the lattice diagonal,
not along a lattice direction as found in Ref. 3. The
direction found here is in agreement with a Schwinger-
boson mean-field calculation. " (ii) Over the whole
spiral region in Fig. 1 one has 8 Eo/Bn 2 & 0; i.e., the cal-
culation really shows phase separation into ferromagnet-
ic and antiferromagnetic domains, in agreement with

1.0

. 20

FIG. 1. Variation of the spiral pitch parameter 6' with band
filling n and strength of the correlations. 6=0 is the antifer-
romagnet, and b =1 is the ferromagnet.
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other theories. ' This instability will, however, be
suppressed if one includes long-range Coulomb interac-
tions. (iii) The energy gain per particle due to the for-
mation of the spiral is of order tn, much smaller than the
energy gain due to domain-wall formation, which is of
order t. ' One should, however, notice that the carriers
in the spiral state are free to move and can gain addi-
tional kinetic energy of order t by distorting their local
spin environment, whereas in the domain-wall case the
carriers are bound to the domain walls. It is therefore
plausible that for strong correlation the spiral state is

stable compared to domain walls.
Also note that the factors 1

—p,*p, in Eqs. (9) and
(11) increase the coupling constant in the effective non-
linear cr model and therefore bring the Neel state closer
towards its instability against quantum fluctuations. ' It
would be interesting to obtain a theory for the analogous
"quantum melting" of the spiral phase, which possibly
will lead to a Fermi-liquid-like state.

The spiral instability of the Neel state is due to the

coupling between fermions and spins in S,a. As pointed
out in Ref. 3, for a nearly antiferromagnetic structure
(0, 0, = —1) this interaction couples fermion and

spin currents. The U(1) gauge field appearing in S,q is

identical to the one considered previously by Baskaran
and Anderson. " In S,'g another term appears, coupling
fermion motion to the winding number of the antiferro
magnetic order parameter ( —I )'0,. The continuum
version of this term has been investigated by Shankar
and by Lee. In the present case, the coupling constant
is t /U, much smaller than the coupling in S,a, which is
of order t. It thus seems likely that the spin-fermion
coupling in S,tr is predominant in the Hubbard model.
The situation is quite different in the model considered

by Shankar and by Lee: There is no nearest-neighbor
hopping, and consequently the coupling between fer-
mions and antiferromagnetic winding number dominates.

In conclusion, I have shown here that starting from a
Hartree-Fock saddle point and using a Hubbard-
Stratonovich decomposition in a fluctuating spin-space
reference frame, the effective action for carriers in a
quantum antiferromagnet can be obtained via a sys-
tematic procedure. In fact, generalizing the functional
integration over 0, to the full SU(2) manifold, the
effective action is closely related to the Schwinger-boson
formulation of the problem. One should, however, notice
that the present approach can be straightforwardly ex-
tended to intermediate and weak coupling: In the vicini-

ty of half filling one can expand around the antiferro-
magnetic saddle point. The t/U expansion then becomes
impractical; however, a long-wavelength expansion is

possible for arbitrary U, and one finds terms of the same
structure as in (9) and (11), with an additional coupling
to a scalar field representing the amplitude of the spin
modulation. Further away from half filling one can ex-
pand around the paramagnetic solution, and one obtains
an explicit description of amplitude and orientational

fluctuations of the local spin density. The present formu-

lation thus provides a convenient starting point for a dis-

cussion of the similarities and differences between weak

and strong correlation.
The present approach allows an interesting generaliza-

tion: Using the matrix representation '

grt Prl

, (
- I ) 'y,*i —(- 1)'y,*)

(12)

the Hamiltonian can be written in a SU(2) x SU(2)-
invariant way: Multiplying O, by a SU(2) matrix from
the right, one generates the spin rotations discussed
above, but multiplication from the left generates
electron-hole transformations [in the Heisenberg model

this becomes a SU(2) gauge symmetry' ]. The above

formalism then can be rather straightforwardly general-
ized to include variable reference frames in both SU(2)
spaces. In the large-U limit, that formulation becomes
equivalent to a slave-boson description. ' It thus seems

possible to relate slave-boson mean-field theories to ap-
proximate functional-integral theories of, e.g. , the Hub-

bard model. Given that functional-integral methods are
applicable for arbitrary interaction strength, this may
prove helpful in understanding similarities and difl'er-

ences between weakly and strongly correlated systems.
I am grateful to A. E. Ruckenstein and T. Giamarchi

for a number of stimulating discussions. Laboratoire de
Physique des Solides is a laboratoire associe au CNRS.

'P. W. Anderson, Science 235, 1196 (1987).
zA. A. Gomes and P. Lederer, J. Phys. (Paris) 38, 231

(1977), and references therein.
3B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467

(1988); 62, 1564 (1989).
4R. Shankar, Phys. Rev. Lett. 63, 203 (1989); Nucl. Phys.

B330, 433 (1990).
5X. G. Wen, Phys. Rev. B 39, 7223 (1989).
6P. A. Lee, Phys. Rev. Lett. 63, 680 (1989).
M. Inui, S. Doniach, and M. Gabay, Phys. Rev. B 38, 6631

(1988).
sB. Berg and M. Luscher, Nucl. Phys. B190, 412 (1981);E.

Fradkin and M. Stone, Phys. Rev. B 38, 7215 (1988).
9Y. Nagaoka, Phys. Rev. 147, 392 (1966).

' B. Douqot and R. Rammal, Int. J. Mod. Phys. B 3, 1755
(1989); H. J. Schulz (unpublished).

' 'C. Jayaprakash, H. R. Krishnamurthy, and S. Sarker, Phys.
Rev. B 40, 2610 (1989).

'2L. B. Ioffe and A. 1. Larkin, Phys. Rev. B 37, 5730 (1988);
V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett.
64, 475 (1990).

'3H. J. Schulz, J. Phys. (Paris) 50, 2833 (1989).
'4S. Chakravarty, D. Nelson, and B. I. Halperin, Phys. Rev.

Lett. 60, 1057 (1988).
'5G. Baskaran and P. %. Anderson, Phys. Rev. B 37, 580

(1988); X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39,
11413 (1989).

' I. AfBeck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev.
B 38, 745 (1988).

'7A. E. Ruckenstein (private communication).

2465


