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Virtual Electron Diff'usion during Quantum Tunneling of the Electric Charge
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We calculate the rate of the elastic macroscopic quantum tunneling of the electric charge (q-MQT) in

a system of two small-area, normal, tunnel junctions in the Coulomb blockade regime. Despite the fact
that the intermediate electron state on the central electrode of the system during the tunneling is virtual,
the rate of the q-MQT depends crucially on the character of real electron motion through this electrode.
Typically this motion is diA'usive, so that the tunneling rate is determined by the process of "virtual
diffusion" of electrons on the time scale of the inverse Coulomb energy of the system, It/Ec

PACS numbers: 73.40.Gk, 72. 10.Bg

Dynamics of small tunnel junctions or multijunction
systems in the Coulomb blockade regime' (i.e., for small
voltages across the system) can be described in terms of
macroscopic quantum tunneling of the electric charge
(q-MQT). Consider, for instance, a system of two
series-connected normal tunnel junctions with small ca-
pacitances C~ 2 and conductances G~ 2. For small volt-

ages V across the system and low temperatures T the
tunneling in either of the two junctions is suppressed,
since even a single tunneling event would charge the cen-
tral electrode and increase the electrostatic energy of the
system considerably. The only energy-favorable tunnel-
ing is the tunneling through the whole system via a virtu-
al intermediate state with increased electrostatic energy.
Such a tunneling arises due to quantum fluctuations of a
macroscopic variable, the electric charge Q on the cen-
tral electrode of the system, and hence can be viewed as
a macroscopic quantum process. Because of this tunnel-
ing a finite current can flow through the system even in

the Coulomb blockade regime. Recently, the q-MQT
has been observed in linear arrays of two normal tunnel
junctions. Apart from being of fundamental interest, the
q-MQT sets an important limitation on the performance
accuracy of practical devices based on correlated single-
electron tunneling, ' for instance, the single-electron
turnstile device as a fundamental standard of the dc
current.

The q-MQT rate in a double-junction system was first
calculated in an approach that completely neglects
coherence between wave functions of electrons tunneling
through different junctions. This approach gives a
correct description of the inelastic contribution to the q-
MQT, which dominates in the most realistic case when

the electron density of states 6 ' on the central elec-
trode is high enough, 6 '&&E~ ', where E~ is the
characteristic charging energy of the system (see below).

Later it was pointed out that there should also exist an
elastic contribution to the q-MQT. However, the current
arising due to this tunneling was calculated in an un-
realistic model which does not explicitly consider the
crucial process of electron propagation inside the central
electrode between two tunnel junctions. The purpose of
the present Letter is to derive a general expression
describing both elastic and inelastic contributions to the
q-MQT and calculate accurately the current associated
with elastic tunneling.

The Hamiltonian of the double-junction system is
(see, e.g., Ref. 1)

H =Hp+ HT, Hp =Hc+ H i +Hp+ U,

HT =HT1+HT2,

m, n

(3)H; =(H )'
We will consider junctions with small conductances,

G;((Rg ', Rg ——trh/2e, so that we can treat HT; as a
perturbation. Since one act of q-MQT includes two elec-
tron tunneling events, the current associated with this
tunneling is of the fourth (second nonvanishing) order in

HT;

where H, and H
~ z are the Hamiltonians of, respectively,

the central electrode and the external electrodes, and U
is the electrostatic charging energy,

eV
U = — (C)np+ C2n (), (2a)

Q=e(n~ —n2)+Qp, Cg=Cl+C2. (2b)

Here n; is the number of electrons that have tunneled
through the ith junction and Qp describes the potential
difference between the central and external electrodes.
The terms HT; describing the tunneling can be expressed
via the standard tunneling Hamiltonians:

HT, H;++H;, H;+=gT'c c

2e WZI=
4 Re J dr dr' dr [(Hi+ (t)HT(r)HT(r')HT(r )) —(HT(r )HT(r')HT(r)Hi+ (t))]

fo zt

+ dr dr' d& ((HT(& )HT(&')Hi (t)HT(&)) (HT(r)Hi (t)HT(r—')HT(r"))i
i

(4)
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where the time dependence of HT is determined by Ho, and the average ( . ) is taken over the equilibrium density ma-
trix corresponding to Hr(. Collecting the terms in Eq. (4) that describe the q-MQT we get

e(y(+) y(
—))

t l

y
+ = g Re dr) dr' dr" expI —i [E2(t —r)+eV(t —r') E—(r' —r")]/hj

p, q 1,2
p+0

x(H (r")H (r')H)+ (t)H2+ (r))
t I

dr „dr'„dr"exp[i[E((t —r) —eV(r —r') E~(r—' —r")]/hi

x(H (r")H (r')H+ (r)H+ (t)) (6a)

6(
y

= g Re „dr„dr'„dr"exp[i[E~(t —r) eV(—r —r") Eq(r' ——r )]/&j
p, q l, 2

p»v

x(H+(.)H,+(t)H, (.')H, (."))

dr dr' dr" exp[ i [E2(t ——r)+eV(t —r")+E (r' —r")]/Aj

&&(H) (t)H2 (r)Hp (r')H~ (r')& (6b)

In Eqs. (6) we have written down explicitly the time-dependent phase factors of operators H, related —to the electro-
static energy (2): E; —=U(n;+ I ) —U(n; )

Applying the Wick theorem to the averages in Eqs. (6) we get, for instance,

T(Iyg Tg'm ?,( Tn(' (c(

chic(cp

)~ —
~ Tk~ ) ~

T ( ( (c( c()(ckck ) + Tk~ T(~ T~p T ( (c/(cg)(c(c( ) . (7)

(Here and below the indices m, n refer to the energy eigenstates of the external electrodes, while k, l refer to those of the
central electrode. )

Those terms in Eqs. (6) which are similar to the first one on the right-hand side of relation (7) are only dependent on
the absolute value of the tunneling amplitudes T ' and thus describe the tunneling process without any coherence be-
tween tunneling events in the two junctions. Roughly speaking, it means that two different electrons tunnel in the two
junctions: One jumps into the central electrode above its Fermi level, and another one jumps out of the electrode from
below the level. Hence, such a tunneling unavoidably involves the creation of an electron-hole excitation on the central
electrode, and can be called inelastic. (It seems important to note that this term has nothing to do with inelastic elec-
tron scattering in the junction electrodes, which we do not take into account in our model. ) In contrast to this inelastic
tunneling, elastic tunneling [described by the terms in Eqs. (6) similar to the second one on the right-hand side of rela-
tion (7)] does not create such an excitation. In a sense, this implies that the same electron tunnels through both of the
junctions. Hence, the rate of elastic tunneling is very sensitive to the electron motion inside the electrode. The informa-
tion about this motion is contained in the phase factors of the tunneling amplitudes.

Quantitatively, carrying out the transformation (7) in Eqs. (6) we get

(+ ) (+)+ (+))'in )'el

y;„= 4 de) dc2dc3dz4 f(e) ) [I —f(e2)] f(e3) [I f(s4)]-(+) AG(Gp

2ze4
2

1 + 1

~]+E l ~4 ~3+E2
b (eV+ e

~

—@2+e3 —e4), (9)

where f(c) is Fermi distribution function [the backward tunneling rate y;„' is given by Eq. (9) with V —V,

E; E;+eV]. At zero temperature Eq. (9) reduces to Eq. (32) of Ref. 2. For small voltages, eV«E„ the inelastic
contribution to the tunnel current can be found explicitly for nonvanishing but low temperatures (T«E;):

I;„=e(y„+'—y„') = + [(eV)'+(2(rT)'] V.
AG]G2

12ze El E2
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The elastic tunneling rate y, ~+ is

y, ~+ = g Tk~ TI* ' T„a T„*~ f(c ) [1 f—(c„)]F(cl,c,c„)F(cl„cm,c„)8(c —c„+eV),(+) 2z
m, n, k, l

F(„,) E~+c—e E2 —e+e„

(»a)

(1 1 b)

[the backward tunneling rate y( is given by Eqs. (11) with V —V, E; E;+eV, and c c„]. As will become
clear below, the elastic tunneling rate is smaller than the inelastic one by a factor of 6/E~. Thus, the elastic tunneling
can be essential only for eV «E;, when the inelastic tunneling should be weak at sufficiently low temperatures [see Eq.
(10)]. In this region the elastic current, I,~ =e(y, ~+ —

y~~ ~), depends linearly on the voltage, and it is sufficient to cal-
culate the corresponding conductance G, ~

—=(dI,~/dV)~v-p. In order to take into account the phases of the tunneling

amplitudes it is convenient to write down the amplitudes in the coordinate representation,

Tt, d y d z T(y, z)yt, (y)y (z) .

Substituting (12) into (11) we get for the elastic conductance

(12)

G, )

2' dc dc'F(c)F(c')R(c, c'), (13a)

R(c,c') „d z~d z2d z3d z41 y~d y2d yid y4T '
(y~, z~)T (yi, zi)T* '

(yz, z2)T* (y4, z4)

&&K (pz 2z~)Kp(zg, z4)K (y~,yi)K, (y4,y2) . (13b)

where the points z~ and y~ are located in the external electrodes and the central electrode, respectively; F(c)=F(c,0,0),
and

K,(x,x') =gyq (x)—yq (x') 8(c c, ) . —
q

Acting along the same lines as in Ref. 6, one can show that in the quasiclassical approximation R(c,c') is

R(c,c') =R(c—c')- d xi 2d n~ 2gi(x~, ni)g2(xz, n2) dtexp[i(c —c)t/ h] P( x~, n, i0;x,2n2~t~). (14)
8z'e4v U

Here v is the density of states per unit volume of the cen-
tral electrode, and P(x~, n~, 0;xz, n2, t) is the quasiclassi-
cal probability to find an electron at time t &0 at the
point x2 with the momentum pFn2 (where pF is the abso-
lute value of the momentum on the Fermi surface, and n;
is its direction) if at time t 0 it was in the state (x~,n~).
The quasiclassical probabilities g;(x;,n;) for the electron
to tunnel from the ith external electrode to the state
(x;,n;) are normalized in such a way that the junction
conductances per unit area g;(x;) and their total conduc-
tances G; are

g;(x;) =„d'n; g;(x;,n;), G; -„d'x, g;(x;) . (15)

The integration d x, in Eqs. (14) and (15) is carried out
over the ith junction area.

Equations (13a) and (14) are the main result of our
work. They describe the rate of elastic charge MQT in

the double-junction system in terms of the classical elec-
tron motion through the central electrode of the system.
The only fact that reminds us of the virtual character of
electron motion in the tunneling process is that the tun-
neling rate depends on the characteristics of classical
motion on the time scale Eg/h. Thus, Er/h plays the
role of the time which the virtual electron can spend to
propagate from one junction to another.

The rate of the elastic tunneling and the corresponding
conductance G,~ depend, in general, on the geometry of
the junctions. If the characteristic dimensions L of the
central electrode is larger than the electron elastic mean
free path I (L » I), one can use the usual diffusion equa-
tion to describe the electron motion inside the electrode.
In this case the probability P in Eq. (14) does not de-
pend on n;, so that

R(c) = d'xi g~2( ~)xg ( 2)x„2dt e'" "P(x~,0;x2, ~t ~).

(16)
If the characteristic tunneling time h/Er is much

larger than the classical time L /D of diffusion through
the electrode (where D is diffusion coefficient, i.e.,
Ec»E,h—= hD/L ), the probability P is constant on the
essentially large time scale, P=1/V, where V is the
volume of the electrode. It follows from Eqs. (13a) and
(16) that, in such a case, irrespective of the shape of the
central electrode,

AG]G26 +
4 2

In the opposite limit, E; »EIh, the conductance 6,]
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G,i=

where L is the length of the electrode (the distance be-
tween parallel planes of the junctions). At larger tem-
peratures, E; »T»Etp, the elastic conductance rapidly
decreases and becomes exponentially small:

depends on the specific form of the central electrode and
nonuniformity of conductances g;(x;) along the junction
areas. Solving the diAusion equation for the simplest
case of a rectangular electrode and g;(x;) =const, we get
for low temperatures (T«E,&)

h'G, G,~ + (18)
E] E2

cle only virtually. The inelastic and elastic processes
contribute to the current. The elastic tunneling dom-
inates only at very small voltages and temperatures.
Despite the virtual origin of this elastic tunneling it can
be described in terms of the real electron motion inside
the particle.
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lication and for the stimulating discussion. We are also
grateful to 3. Clarke, R. Koch, A. A. Odintsov, and espe-
cially K. K. Likharev for helpful discussions.

G,)=exp' —(4nT/E, p, ) "l . (19)

Equation (19) implies that there should exist a tempera-
ture region where the total linear conductance of the sys-
tem, G,~+ G;„, also decreases with temperature.

When the central electrode of the junctions is compa-
rable to electron elastic mean free path, the probability P
depends essentially on momentum direction n;, so that
the n; dependence of the tunneling probabilities g, (x;,n;)
becomes of importance. In order to find P(r) [(14)] in
this case one should solve a kinetic equation for the
specific shape of the electrode with the specific boundary
conditions describing the surface scattering. In the most
realistic case when the surface scattering is diA'usive and
&r «&~g (Etg = hvF/L), the elastic conductance is again
given by Eq. (17).

In conclusion, we have analyzed the charge transport
through a metal particle in the Coulomb blockade re-
gime where the tunneling electron can charge the parti-
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