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Conductance Fluctuations in the Ballistic Regime: A Probe of Quantum Chaos?
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We demonstrate the existence of resistance fluctuations in experimentally realizable ballistic conduc-
tors due to scattering from geometric features. The magnetic-field and energy correlation functions are
calculated both semiclassica11y and exactly numerically, and are found to have a scale determined by the
underlying chaotic classical scattering. These systems provide a test of the "random" quantum behavior
of classically chaotic systems.
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A signature of chaos in a classical dynamical system is
"random" (unpredictable) behavior due to an exponen-
tial sensitivity to initial conditions. It is now understood
that quantum systems whose classical analogs are chaot-
ic also exhibit "randomness" in a more subtle manner.
For example, the energy levels of a Hamiltonian begin to
exhibit the long-range level repulsion characteristic of
random matrices at the classical transition to chaos.
Recent studies of "quantum chaos" have turned atten-
tion to open systems whose classical scattering dynamics
is irregular or chaotic in the sense that, e.g. , the final
scattering angle varies strongly with the incident angle
on an arbitrarily fine scale. In these systems, the signa-
ture of quantum chaos is fluctuations of the quantum
scattering matrix with properties described by random-
matrix theory. Since the transport properties of small,
phase-coherent conductors may be expressed completely
in terms of the elements of the S matrix for independent
electrons at the Fermi energy EF, this raises the possi-
bility of an experimental probe of this random behavior
characteristic of quantum chaos. In this Letter, we show
that ballistic conductors of the type which have been ex-
tensively studied recently do indeed show fluctuations
[very similar to the universal conductance fluctuations
(UCF) of bulk-disordered metals ), whose statistical
properties can be predicted from properties of the chaot-
ic classical scattering dynamics.

It is now possible to fabricate two-dimensional elec-
tronic conductors with controllable geometric features
much smaller than the elastic or (at T ~ 4 K) inelastic
scattering length (l;„). Hence electron motion is ballistic
and resistance arises primarily from scattering from
geometric features such as the junction of four wires. In
such junctions novel magnetotransport effects appear at
relatively low magnetic field (8~ 2 T) and T-4 K,
which have been shown to depend on the junction geo-
metry. ' Recently, Beenakker and van Houten showed
that most of the generic effects observed could be repro-
duced simply from the classical S matrix of the junction.
However, there was a very significant difference between
the quantum transport coefficients calculated in Ref. 6
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FIG. l. (a) Hall resistance for four-disk junction with
R/W=4 (inset). The two quantum calculations with slightly
different Fr [solid (dashed) line for krW/x=4. 3 (4.4)l show
fluctuations not present in either the classical (dotted) or quan-
tum square junction (R/W=O, dash-dotted) cases. (b) T(B)
for open stadium with R/W=2 (inset). The solid line is the
quantum result (k&W/rr 4.5), the dashed line is smoothed
(T(B)) used in computing C(AB), and the dotted line is the
classical result. Bo mcvF/eW.

and the classical ones of Ref. 7, shown in Fig. 1. The
T=0 quantum coefficients show aperiodic structure as a
function of 8 on a scale much smaller than that of the
classical features such as the suppression ("quench-
ing" ) of the Hall resistance. Reference 6 found simi-
iar fluctuations as a function of EF. Such weak-geld
fluctuations are in fact observed in many relevant experi-
ments at T=0.1 K, although it was not possible to rule
out impurity effects as their origin. Our calculations
show that aperiodic structure (similar to UCF) can
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occur in systems such as a junction or cavity with no

bulk disorder. Hence the quantum scattering from such

simple objects generates as much complexity in the
transport coefficients as would a random potential; this is

an essential notion in chaos theory, and below we estab-
lish the connection explicitly. The fluctuations arise due
to the complex scattering dynamics from such geometric
features which can trap the electrons for times much

longer than the ballistic transit time. Long trapping
times are essential because, e.g. , the Hall resistance of a
square junction, which cannot trap particles, shows no

such behavior [Fig. 1(a)].
We will now show that the characteristic scale in 8 or

EF for these fluctuations in the quantum transport
coefficients can be predicted from knowledge of the ir-

regular classical scattering dynamics of the same system.
Our results are in strong contrast to recent work which

has discussed fluctuations in the classical transmission

properties. ' The results in Fig. 1 show that fluctua-
tion effects in the classical transport coefficients (calcu-
lated as in Ref. 7) are completely absent in these struc-
tures, at these fields. The fluctuations of Fig. 1 are a

quantum interference efl'ect, not obtainable from the
classical S matrix.

We consider the scattering from two types of open
"billiards, " a two-probe system [Fig. 1(b)] consisting of
two separated semicircles (an open "stadium") and a
four-probe system [Fig. 1(a)] consisting of four quarter
disks with leads. In both cases, the trapping time r of in-

jected particles increases with R/W, the ratio of the ra-

dius of the circle to the width of the leads. The classical
scattering from such billiards is chaotic; ' for exam-

ple, a plot of r versus incident angle shows irregular re-

gions in which a complex pattern reproduces itself self-

similarly on an arbitrarily fine angular scale. For such

systems it is known that the number of injected particles
remaining in the scattering region after time r satisfies

N(r) =N(0)exp( —y,~r),

where y,~=k(1 —d) is the classical escape rate, k is the
Liapunov exponent of the manifold of infinitely trapped
orbits (strange repeller), and d is the information dimen-
sion of the unstable manifolds. '' Although invalid for
the shortest trajectories, the exponential law holds as

~, due to the presence of scattering paths arbitrari-
ly close to infinitely trapped unstable orbits. y, ~

is found
to be independent of the distribution of incident particles
(barring degenerate choices), and for billiards (in which
the speed v of the scattering particle is fixed) we may for
convenience define an inverse escape length y, ~=y, ~/v

and study the distribution of trajectory lengths, N(L).
We have numerically determined N(L) and hence y, ~

for
these billiards [inset, Fig. 3(a)]. Typical paths are not
exponentially long, but correspond to -5-15 transits;
thus in the quantum problem we are not in the regime of
transmission resonances. Nonetheless, from the time-
energy uncertainty relation, it is natural to suppose that
the energy scale for the fluctuations is of order by, ~

h(1/r). Such a relationship has, in fact, been demon-
strated recently by Bliimel and Smilansky' on the basis
of a semiclassical derivation of the energy correlation
function. Expressing their result for the two-probe case
[Fig. 1(b)] in terms of wave vector k =(2mE/h, )'t
gives

(2)

where C(dk) =(Bg(k+6k)8'g(k)) averaged over an ap-
propriate k interval, and the conductance g=(e /h)T,
with T the total transmission coefficient. T =

-~~t„„~, where t „ is the transmission amplitude
between the N transverse modes in the leads.

For applications to ballistic conductors the more
relevant quantity is the magnetic-field correlation func-
tion C(AB), since B is the most convenient experimen-
tal control parameter. We outline a semiclassical deriva-
tion of C(BB) below, focusing on the two-probe case for
simplicity; details will be given elsewhere. ' An exact
starting point is

t„=—i h(v v„) dy' dy y,*(y')y (y)G(y', y, EF), (3)

where v (v„) and y (y„) are the longitudinal velocity and transverse wave function for the mode m (n). G is the re-
tarded Green's function, between points (x,y) on the left lead and (x',y') on the right lead (omitting an irrelevant
phase factor dependent on x,x'). To approximate t „we replace G by its semiclassical path-integral expression, '

G(y, y, E) = g JD, exp S, (y', y, E) —i —p, — (4)

where S, is the action integral along classical path s, at
energy E, D, =(vcos8'/m) '~(88/By')~, ~, 8 and 8' are
the incoming and outgoing angles, and p is the Maslov'
index given by the number of constant-energy conjugate
points. The restriction to paths at energy E arises from a
stationary-phase approximation in the time Fourier
transform of the WKB propagator. ' We evaluate t „
from Eqs. (3) and (4) in an analogous manner. Assum-

ing hard walls in the leads, the integration over the
transverse (sine) wave functions can be performed by use
of the stationary-phase approximation, valid in the
(semiclassical) h 0 limit. For example, the station-
ary-phase condition on the y integration is (85/By)~
= —

p~
= —mhn/W' for y =yo (m = —rn, m); i.e., the

classical trajectories that contribute are those for which
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the incident transverse momentum is equal to the ap-
propriate quantized value. We obtain

t„=— g sgn(m)sgn(n) JD,(2zih) '"
s(ln, n)

x exp S,—(n, m, E ) —i —v,
1 . E

(5)
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The sum is now over trajectories between the cross sec-
tions x and x' at angles sin8=mtr/kW and sin8'=nn/
kW. The action is

BS,
BB
" 8,~8

hA dl=
Ao

where ~V&hA( 58, po hc/e. Unlike r, 8 can be pos-
itive or negative (see Fig. 3), and we find that for weak
fields, except near the origin, 8 has an approximately
symmetric exponential distribution, N(8) cx:exp( —a, ~

x ~8~). Weemph' asize that the entire analysis is only
valid for weak ftelds, where the cyclotron radius is
larger than the device dimensions For closed. orbits, 8
is the area enclosed (times 2tr). For typical open orbits
this is true to a good approximation, and the inverse de-

cay constant a, ~

' will then give the root-mean-squared
area enclosed by trajectories traversing the structure (al-
though 8 is not itself gauge invariant, we have checked
that a, ~

is independent of gauge' ). Finally, making the
approximation N(8) eeexp( —a ~8d~) for all 8 we can
replace the sum over trajectories by an integral over e,
giving

C(d 8) =C(0)/[I + (48/a, (Po) '] '. (7)

We have calculated by classical simulations y, ~, a, ~
for

the structures shown, and hence can compare the predic-
tions of Eqs. (2) and (7) to exact numerical results for
the correlation functions obtained by the recursive
Green's-function method with no free parameters. We
consider systems with 4-15 modes at EF. It is important
to note that the semiclassical approximation (SCA)

S(n, m, E) S(yo yo.E)+htrmyo/'W htrnyo/W

the prefactor is

D, (mvcos8') '
~
(By/B8') e~,

and

v p+ H ( —(B8/By )y )+H ( —(B8'/By') e)

(H is the Heaviside step function). '"

C(68) (bg(8+58)8g(8)) can be calculated using

Eq. (5) by arguments similar to Ref. 3. First, in the
multiple sum over paths, only the interference of a path s
at field 8 with the same path at 8+6,8 is retained.
Second, the difference of the action is expanded to find
the relative phase accumulated:
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FIG. 2. Magnetic-field correlation function from the data of
Fig. 1(b) (for W 1000 A., half-width BB, 40 6). The
dashed line is the semiclassical prediction of Eq. (7). Inset:
The smoothed power spectrum of T(B). Error bars indicate
the rms variation of raw data. The dashed line is the best fit to
the Fourier transform of Eq. (7) in the interval [50,200].

0.080.06

leading to Eq. (4) or (5) is not well justified in the few-
mode limit typical of experiments, since the difference
between the actions of classical trajectories with the
same end points is not always much greater than A.
Thus our numerical results provide a crucial test of the
accuracy of the SCA in such systems.

First we show (Fig. 2) a typical correlation function
C(68) and the SCA prediction of Eq. (7). The agree-
ment is excellent except in the tail which corresponds to
the nonuniversal short-trajectory behavior. Because the
behavior in the tail affects the half-width, it is necessary
to calculate bT from a smoothed (T(8)) curve [Fig.
I (b)], which introduces some arbitrariness in the deter-
mination of a~ . To eliminate this freedom, we instead
extract av from fitting the Fourier power spectrum of
the data by the Fourier transform of Eq. (7) (inset of
Fig. 2); the value thus extracted is independent of the
nonuniversal "low-frequency" behavior. The same ap-
proach was used to extract yv from C(hk), by fitting
with the simple linear power spectrum of Eq. (2).

Figure 3 shows that yv, av are indeed given by the
classical quantities y, ~, a, ~

to high accuracy while they
are varied over roughly 2 orders of magnitude by chang-
ing R/W in the two- and four-probe structures. Thus it
is possible to predict quantitatively measurable proper
ties of these ballistic quantum conductors from a
knowledge of the chaotic classical scattering dynamics

A simple heuristic argument based on the SCA above
implies that the magnitude of the transmission fluctua-
tions, C(0), is order unity (see, e.g. , Fig. 2), independent
of N and R/W, and detailed numerical studies confirm
this. ' Thus the effect at T=O is large; however, we ex-
pect the magnitude to be exponentially sensitive to tem-
perature because, unlike the diffusive case, since once I;„
is of the order of the system size, it is impossible to break
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the same analysis of scattering from nonchaotic cavities,
e.g. , a rectangular box, and still find substantial aperiod-
ic structure. However, a careful analysis of the Fourier
spectra indicates that they have a qualitatively different
and nonuniversal shape in the many-mode limit, which is

clearly distinguishable given 2- or 3-orders-of-magnitude
sensitivity.
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Note added. —After completion of this work we re-
ceived a preprint by E. Doron, U. Smilansky, and A.
Frenkel, applying an analysis similar to that of Fig. 3(a)
to measurements of the frequency-dependent reflectivity
from a microwave cavity.
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FIG. 3. (a) Ratio of the wave-vector correlation length, ob-
tained by fitting power spectrum as discussed in text, to classi-
cal escape rate y, l as a function of y, l for both structures.
Four-disk structure (triangles) with R/W 1,2, 5, and open
stadium (squares) with R/W 0.5, 1,2,4, 6,8. y, i is obtained
from the classical N(L) curve and is in units of the distance
between opposite leads; L is measured in units of W. (b) Ratio
of magnetic-field correlation length (obtained as in inset of Fig.
2) to ad, the exponent of the distribution of effective areas, as a
function of a, i for both structures. Four-disk structure (trian-
gles) with R/W 1,2,4, and open stadium (squares) with

R/W 1,2,4,6. a, i (in units of W ') is obtained from classi-
cal N(e) curve. Insets: (a) N(L) and (b) N(e) for structure
of Fig. 1(b). The correlation lengths of the quantum fiuctua-
tions agree with the semiclassical prediction over two decades.

up the system into smaller phase-coherent units which

show the effect. Moreover, the important trajectories
traverse the system several times; thus a reasonable cri-
terion for the crossover temperature is y, il;„(T)= I.

We brieAy comment on two important issues to be
treated elsewhere. ' First, the nonuniversal behavior due
to short trajectories does cause very-low-frequency peaks
in the Fourier spectra whose intensities depend on the
mode index (yv, av do not), and increase with decreas-
ing total number of modes. For example, Tii has a
strong periodic component in the open stadium with five

modes; this is due to the caustic associated with direct
paths. ' ' Second, there is the fundamental question of
the extent to which these Auctuation effects are a unique
signature of quantum chaos. We have performed exactly
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