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Twisted Boundary Conditions and Effective Mass in Heisenberg-Ising and Hubbard Rings
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We identify the boundary energy of a many-body system of fermions on a lattice under twisted bound-

ary conditions as the inverse of the effective charge-carrying mass, or the stiffness, renormalizing non-

trivially under interactions due to the absence of Galilean invariance. We point out that this quantity is

a sensitive and direct probe of the metal-insulator transitions possible in these systems, i.e., the Mott-
Hubbard transition or density-wave formation. We calculate exactly the stiffness, or the effective mass,
in the 1D Heisenberg-Ising ring and the 1D Hubbard model by using the ansatz of Bethe. For the Hub-
bard ring we also calculate a spin stiffness by extending the nested ansatz of Bethe-Yang to this case.

PACS numbers: 71.30.+h, 75.10.Jm

It is intuitively clear that one can distinguish between
a metal and an insulator by studying the variation of ei-
genvalues under changes in boundary conditions (BC's).
This was proposed by Kohn ' as a means of studying the
Mott transition —a metal-insulator transition that re-
quires the combination of strong correlations and a
single-band model of fermions. We present here what
we believe is the first application of this idea, in two non-
trivial many-body problems in 1D exhibiting the metal-
insulator transition. These are the Heisenberg-Ising
model undergoing a CDW (charge-density-wave) transi-
tion, and the Hubbard model undergoing a Mott transi-
tion.

We first sharpen the arguments of Kohn, specializing
to a one-band d-dimensional-lattice Fermi system, and
deduce the main implications —some of which seem to
be insufficiently appreciated in literature. Consider a d-
dimensional hypercubic lattice of linear dimension L,
with spinless fermions having a nearest-neighbor hopping
matrix element t and arbitrary density-dependent in-

teractions that are lattice-translation invariant, and as-
sume periodic BC's. We now introduce a uniform vector
potential A, x, which modifies the hopping in x-directed
bonds by the usual Peierls phase factor, t t exp( ~i@/

L), where @=LA„e/hc and the lattice constant ap= 1.
Expanding the exponential we find the perturbed Hamil-
tonian H'=H —4j,/L —-'4 T,/L +O(4 ), where j„
=2 +tsi kn„C Ckk, T„=—2t gcosk„Ct, Ct, , and H is the
Hamiltonian for the interacting Fermi system. The en-

ergy shift of the ground state (g.s.) in the presence of the
field is Eo(4) —Ep(0)=—D@ /L +0(@ ), with the
stiffness constant D given by second-order perturbation
theory as

D=
d ( —T) —g

L , ~p E,,
—Ep

where (T) is the kinetic-energy expectation in the g.s.
and Ep(0)=Ep. We have assumed that (j„& is zero.
Higher-order (nonquadratic) terms in the energy-shift
formula are important when the energy shift is compara-
ble to the energy gaps in the spectrum of H. The latter
are O(1/L) in metals and so in this case corrections arise
when 4 is O(l/L ' t ). Level crossings would occur
and perturbation theory would break down for @ of or-
der x.

We next specialize to A„A„exp( —icot) leading to
an electric field E„=A,(ico/c)x, from which the usual
linear-response formula' gives the imaginary part of the
ac conductivity,

So„„(co)= „+ I&0Ij„I.&I'(E,-E.)
L h co 2d v~o (E„,—Eo) —h co

From (1) and (2) we see that lim pco2o„(co) =(2e /h )D and lim„coact, „(co)=(e /dh L )( —T). The high-
frequency behavior of the imaginary part of the conductivity implies for the real part, through the usual dispersion rela-
tions, the well-known f-sum rule:

f+ OO R'e
Acr„,(co)dco=, d ( —T).dh'Z'

More interesting is the small-co behavior, implying that

D&(hco)+ ', 2 I &0Ij., I v& I
'~((E, —Eo)' —&'co')z', ~o

(3)
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The coefficient of 8(hcu), if nonzero, implies free ac-
celeration or infinite dc conductivity, which is reasonable
here since there is no dissipative mechanism in the model
at T=O. The coefficient is essentially the inverse of the
effective current-carrying mass (for free electrons it is

trpe /m). Therefore the f-sum rule is satisfied by the
sum of two terms of the same order, the stiÃness D and
the "intraband dipole matrix elements. " A method to
calculate Ep(@) is to study diA'erent BC's—we can ab-
sorb the Peierls phases by a pseudo-gauge-trans-
formation and shift the eA'ect of @ into twisted BC's for
the wave functions:

+(. . . , r+Lx, . . . ) =exp[i@]+(.. . , r, . . . ) .

A crucial point (familiar from Landau s Fermi-liquid
theory) is that for a Galilean-invariant interacting sys-
tem, an analogous calculation would give the coefficient
of 8(hco) in (3) unrenormalized by interactions since
j[„H]=0 [the first term in (1) becomes the particle
density]. For lattice fermions the operator j, commutes
with the hopping part of H, but not with the interaction
piece in general and hence for interacting lattice fer
mions there is the possibility that the two terms in (1)
cancel as some parameter is varied, signaling a metal-
insulator transition. The absence of Galilean invariance
thus allows the charge-carrying efl'ective mass to vary
with interactions, and in fact to diverge.

We now consider the 1D Heisenberg-Ising (H-I) mod-
el of spinless fermions, with twisted BC's on a ring of
length L described by

H = —g (C„'C„+~+H.c.) —2hg (p„—-' )(p, + ~

——. ),
with p„=C C„. Much is known about the model
without the twist, and we merely note here that it has a
gapless phase for —

1 ~ h, ~ +1 which is the conducting
phase, and an ordered state with a gap for —

1 & 6, the
insulating state. Bethe's ansatz is readily generalized to
the case of twisted BC's (4) and the g.s. energy is
known' for all @ for the repulsive case (0~ h~ —1).
The angle 4 has the physical interpretation of a magnet-
ic flux through the ring in units of hc/e. In brief,
the Bethe equations generalize to Lk„=2trI„+4

~„e(k„,k ) with the usual phase shift 8. In the
sector with M=L/2 particles the g.s. quantum numbers
are I„=—(L+1)/2+n for 1 ~ n ~ L; this is the half-
filled band corresponding to S;„=L/2 —M=O in —the
spin representation. In general, a calculation of the
stiA'ness D requires a precision in total energy of order
1/L in 1D. In this problem, however, it is possible to ob-
tain D through a thermodynamic calculation using a re-
markable property of the generalized Bethe equations,
and the result (with 6= —cosp) is

sinp
4 p(tr —p)

As 6 —1, p 0 and D approaches a nonzero value

For h, & —
1 there is a gap in the spectrum and D is

zero —thus the stiA'ness and the eff'ective mass have a
jump discontinuity.

This transition is tracked by the interesting variation
of certain eigenvalues of the H-I model. The state of the
H-I model obtained" from the g.s. by adiabatically in-
creasing @ from 0 to 2z is one with a total momentum zr,

and can be found from the set of generalized Bethe equa-
tions by shifting all g.s. integers by unity; the energy
above the ground state is AE~ =4Dtr /L =tr (sinp)/
p(tr —p)L. A third state of relevance is the g.s. in the
sector S= =1 (corresponding to removing a particle) with
an energy (above the absolute g.s.) given by Yang and
Yang9 as AE2=tr(tr —p)(sing)/pL in the entire gapless
range, —

1 ~6~ +1. These levels cross at the critical
point where 6 —1. This degeneracy is accounted for
by the rotational invariance of the H-I model at h, = —l.

In the ordered state 6 & —1, the second state above
(with quantum numbers leading to hE~) is asymptotical-
ly degenerate with the g.s. (the splitting vanishing more
rapidly than 1/L" for any n) Its. energy splitting from
the g.s. is fortunately available from the work of Baxter
who calculated the interfacial tension of the six- and
eight-vertex models. Baxter's beautiful result trans-
lates into D-exp( —L/g), where the correlation length

7

1+x4m —2

2x' -i 1+x "'

with 5 = —cosh', x =exp( —X). This phase is therefore
insulating in the thermodynamic limit. The third state
above corresponds to removing a particle, and develops
an energy gap in this region, 5 & —1, with

( 1)n
hE2 =2(sinhk)

—~ cosh nk,

The above behavior of D implies that although the sys-
tem is insulating in the infinite-lattice limit, for a finite
system, provided L/g is not too large, we should see a
small "free acceleration" response arising from adiabatic
sliding between the almost degenerate "ground" states.

We next consider the repulsive U~ 0 Hubbard model
in 1D containing two species of particles, spin up and
spin down. The boundary angles for the two are treated
as independent parameters @t and @~. There are two in-
dependent stiff'nesses that we may calculate. Setting
&t =@~=4 the energy shift gives the "charge stiA'ness"
D, and setting @,= —@t =@ gives the "spin stiff'ness"
D, These have expressions . identical to Eq. (1), with D,
involving the sum of the up and down currents and D,
the difference in the matrix element, and both containing
the total kinetic-energy expectation. This general case
requires a generalization of the Bethe-Yang ansatz that
was employed by Lieb and Wu'' for the solution of the
model with periodic BC's. We present here, in brief, the
analysis necessary to ensure that the model remains solv-
able with the twisted BC's.
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The model is described by the usual Hamiltonian and
we denote by L, N, and M the number of sites, particles,
and down-spin particles. The Bethe wave function is
written in the form

x. (
] (jl(

g exp igkpx„a([j„I!,P)(.X'N (L P, n

(j~(N

xC„', i C„ i C„', t C,', t i0),

where P is a sum over the N! permutations and

A([j„] ~
P) is the amplitude. The wave function satisfies

the difference equations that follow from the Hubbard
model in the interior of the chain as usual with energy
E = —2+cosk„(setting r 1), provided the amplitudes
satisfy the usual consistency conditions. "' We impose
the boundary conditions Eq. (4) with different boundary
angles for the two spin species by transporting the parti-
cle at x] to x ~+ L, and this gives

exp(ikp, L)A ([j„']
~

P')

= [exp(i@ib„ 1)+exp[iei(1 —8, , i)IA([j„] ~
P) . (5)

Here P' is obtained from P by a cyclic permutation and
j„' =j„—1(rnodN). It is convenient to write these in vec-
tor form by introducing

~
A (P)) =p

~ [j,])A ([j,} I P)
with the vector

~ [j„])denoting the basis state with over-
turned "spins" located at the "sites" j, . . . ,j„. The
BC's Eq. (5) translate into the following N eigenvalue
conditions that must be simultaneously satisfied:
exp(ik, L) ~AD) =L, ~AD), where ~AO) is the vector for

the identity permutation, the ¹tring operators are

Lj Lj~] j Ly jDJL] j Lj—] j,
the operators X, ~

= (y, ~
—P; &)/(y; i

—1), with y; 1 =2i
x (sink; —sink, )/U and P;, the usual permutation
operator, and the new operator is

D, =exp(i@i) (I+a, )/2+exp(i@i) (1 —
o~ )/2.

We must now verify that the 1V operators Lj commute,
and then diagonalize these. This task is neatly per-
formed with a generating (monodromy) operator Yg act-
ing on a (N+1)-site spin chain, Yg()i) =Dgl~ g(X)

l 1 g(A, ), where g is the extra (N + 1)th site and the
scattering operator

l„g(k) = [i(sink„—A. ) —U/2P, g]/[i(sink„—X) —U/2] .

The N-string operators Lj can be obtained from the
generating operator by using that Tr~ Yg(1i, =sink~)
=L, ( —[k„]). The commutation relations between L~
are guaranteed if Tr~Yg(X) commutes with similar
operators differing in the spectral parameter A. . This is in

turn true' if an operator R~ g exists such that
Y~(X)Y~(p)R~ g (l,p) =Rg ~(l, ,p)Yg(p)Yg (k). In the
present problem the Y operator differs from the zero-flux
case through the D, operators with the property that
DgDg =e exp[d(a~+erg)]. Noting that the Rg~ for the
Heisenberg spin chain fulfills the commutation rules in

the zero-flux case and further commutes with cr~+og,
we conclude that the twisted-BC case is also satisfied by
the same R operator. The diagonalization of the Lj
operators was done by a variant of the nested Bethe-
Yang ansatz and the resulting transcendental equations
are

M

Lk„=2nI„+At+2 g arctan[4(A~ —sink„)/U],

IV M

2 g arctan[4(A, —sink„)/U] =2zjl+4~ —@i+2+
n l lWj

with I„,J, as the usual quantum numbers (integer or half
odd integer).

In order to study D„, the charge stiffness, we set @t
4~ =2m, and argue that the excitation energy is

(4' /L)D, . The underlying assumption here and in the
next section (justified for the H-I model in Ref. 7) is
that the energy Eo(@) remains quadratic in 4 out to this
value, in spite of a level crossing that occurs prior to it.
With this assumption, we can calculate D„ in the gen-
eral case, from the excitation energy of the state, ob-
tained by adding unity to the g.s. quantum numbers I„.
An evaluation of D, requires a detailed study of the
finite-size effects. Here we are content to observe that
the general structure of the equations forces D, to vanish
as O' L, i.e., as we approach half filling for any
nonzero value of U. This follows from the fact I„+L
and I„ lead to the same solution, and further, at half

arctan [2(A, —A, )/U], (7)

filling, the set of N=L g.s. integers I„exhaust all the al-
lowed distinct values —(L —1)/2, . . . , (L —1)/2, where-
by D, =0. To leading order in 1/U we can see this ex-
plicitly. Here AJ are of 0(U), and hence the two sets of
equations decouple. It is readily seen that the charge
stiffness is identical to that of spinless fermions with a
density 8=(L —N)/L, and hence D, 0 linearly as
8 0. It is also ~orth remarking that this vanishing
stiffness can be equally well interpreted as a vanishing of
the density of the effective carriers of charge, the
"holons" of Anderson. '

The spin stiffness can, however, be related with the
help of a remarkable identity to the bulk spin susceptibil-
ity, which in turn can be calculated readily by the
method of integral equations for relevant densities. Con-
sider the state for even N, with M=N/2 and @i =@i
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=0; this is the g.s. for this filling and has the quantum
numbers taking on values I„=—(N + 1)/2+ n for
1 ~ n ~ N and J = —(N/2+1)/2+j for 1 ~ j~ N/2.
Suppose that we have found the solutions for k„and A~.
We now turn on tIi so that @t = —rr and @~ =x, thereby
"deforming" the previous solution. This case, however,
can be solved by a neat observation (analogous to the
H-I model in Ref. 8). The self-consistent solution is that
A,. „=+~. Equation (7) for j=j .,„ is identically
satisfied, and the remaining N/2 —

1 equations for
1 ~ j~ N/2 —

1 can be written as

N

2 g arctanf4(A, —sink„ )/U)

/V/2 —
1

=2'~'+2 g arctan[2(A, —A, )/U],

with J,'=J, + —,'; in Eq. (6) we drop the 4 and sum j
over the N/2 —

1 finite A' s. This set is recognizable as
the g.s. equations in the sector M=N/2 —1. Hence, the

spin stiffness D, = (L/4rr ) (Eo(N, N/2) —Eo(N, N/
2 —I )]. With the magnetization variable y =I —2M/N,
the g.s. energy in a sector with fixed M is Eo(N, M)
=Neo(y)+ —,

'
NJf 'y +O(y ), defining the susceptibili-

ty. From the smallest allowed value of y=2/N we con-
clude that D, =(I/2z )(L/N)g '. This identity is true
at all U and can be used to extract D, from the calcula-
tion of the susceptibility. The latter has been calculated
numerically'" at several fillings and U. Qualitatively it is

nonzero at all fillings, and resembles the Pauli suscepti-
bility renormalized by U. Physically a nonvanishing D,
implies that the model has long-ranged (presumably
power-law) spin correlations at all fillings.

The origin of the above relationship, between D, and

g, is in the rotation invariance of the model for any U or
filling. It follows from the degeneracy of the lowest exci-
tations of S.- =0 with those of S. =1 (with appropriate
momenta). Apart from the normalization factor of L/N
this is the same relation as in the Heisenberg-Ising mod-

el at 6= —1, i.e., the isotropic point. In general, the
relation between the two for the H-I model is D
= (I/2(tr —

Jt ) 'ig
In conclusion, we have given two nontrivial examples

where a metal-insulator transition occurs due to interac-
tions and is reIIected directly in the effective mass ob-
tained by twisting the BC's. For the 1D Hubbard model
the spin stiffness has been related to the bulk susceptibil-
ity through an interesting identity. It is clear that the
ideas explored here have possible applications in higher-
dimensional models, where numerical investigations with

twisted BC's are possible for small systems.
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