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Multicritical and Crossover Phenomena in Surface Growth
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Extended scaling forms are usually required to account for the complex behavior near a multicritical

point. We explore their role in understanding kinetic phase transitions described by the Kardar-Parisi-

Zhang equation for interface growth. For a surface of dimension d =2, an exponentially slow

logarithmic-to-power-law crossover is predicted from a renormalization-group analysis and compared
with numerical simulations of a deposition and evaporation model. Derivation of scaling forms associated
with the kinetic roughening transition at d & 2 is presented.

PACS numbers: 68.55.—a, 05.40.+j, 64.60.Ak, 68.35.Rh

(t,L) —L 'P(t/L", hiL ', h2L ', . . .), (2)

where g, and z, are the roughness and dynamic ex-
ponents at the (multicritical) transition point, h; are the
appropriate scaling fields which vanish at the transition,
and p; are the associated crossover exponents. Depend-
ing on the relative strength and sign of the scaling fields,

Study of the morphology of a moving interface is im-

portant for understanding and controlling many physical,
chemical, and biological processes. ' One such example
is the growth of a thin film by random deposition.
Though the microscopic mechanisms which govern the
growth and subsequent relaxation of the film are not yet
entirely clear, it is generally recognized that noise in the
deposition rate may induce a surface roughness which
builds up from small to large length scales. This behav-
ior is characterized by a scaling form for the mean-

square surface width,

w'(t, L) -L'~f(g(t)/L) .

Here g is the roughness exponent in the steady state, L is

the linear size of the substrate, and g(t) -t '1' is a typical
growing length scale up to which roughness has fully
developed at time 1 The .scaling function f(x) assumes
a power law x~~ at x(&1 and approaches a constant at
x »1.

In certain physical situations, growth on suSciently
short distances (which translate to early times) follows a
kinetics which is different from its asymptotic form (1).
Such a situation is expected near a continuous morpho-
logical transition: The scaling of surface fluctuations is

initially indistinguishable from its behavior at the transi-
tion, and it crosses over to the form (1) characterizing a
single phase only at later times. The transition between
phases of different roughness and/or dynamic behavior
usually bears a rnulticritical character; i.e., some or all

phases involved exhibit critical fluctuations as well as at
the transition. In analogy with equilibrium systems,
one may write down a multicritical finite-size scaling hy-
pothesis

a variety of asymptotic scaling forms of type (1) can be
reached. For an inftnite system the role of L is replaced
by the growing length scale g(t)-t '", and (2) reduces
to

w'(t)-t "Q(hit" ",h2t" '", . . .), (3)
where P, =g,/z, .

Recent numerical simulations on some growth models
of surface dimension d=2 encountered a class of com-
plex rescaling behavior ' which occurs when the sur-
face (i) grows out of a thermally rough phase under a
sufficiently weak driving force, or (ii) is near a transition
in the growth pattern from layerwise to continuous.
Though the possibility of an extremely slow logarith-
mic-to-power-law crossover has been suggested, ' the
numerical data are prone to other ostensive interpreta-
tions, such as supporting an intermediate phase with no
unique asymptotic scaling. A similar controversy exists
in interpreting results from simulations' ' of a continu-
um equation for surface growth proposed by Kardar,
Parisi, and Zhang (KPZ). '

In this Letter we examine kinetic phase transitions de-
scribed by the KPZ equation from the perspective of ex-
tended scaling hypothesis (2) and (3). We show in cer-
tain limits that explicit functional forms can be derived
from a one-loop renormalization-group (RG) analysis.
Our study reveals an exponentially slow logarithmic-to-
power-law crossover at 1=2. The results on the continu-
um equation are compared with a large-scale lattice
simulation of a deposition and evaporation model. We
present additional analytical results from the RG study
which in particular produces a dimension-independent
logarithmic scaling function at the roughening transition
of the KPZ equation above d=2, whose form was con-
jectured previously based on numerical evidence. ' '

The KPZ equation for the local growth of surface
height h takes the form '

gh/gt =vV'h+(Z/2)(Vh)'+&(x, t).
The Gaussian noise g is assumed to satisfy

&rl(x, t) ( rltx')) =2Db (x —x')8(t —t') .
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In the absence of nonlinearity (X=0) Eq. (4) can be
solved exactly. ' In particular, starting from a flat sur-
face at t =0, the height-height correlation function in

momentum space is given by

(h(k, t)h(k', t)) =(2tr) (1 —e '" ')6 (k+k') . (5)

dv/dl = [z —2+Kdg(2 —d)/4dl v,

dX/dl =[g+z-2]X,

dD/dl = [z —d —2g+ Kyg/4]D,

(8a)

(8b)

(8c)

which are valid when the dimensionless coupling param-
eter g—= (a/tt) DX /v is sufficiently small (weak cou-
pling). Here Kd '=2 'tr t I (d/2), and I=lnb. The
Galilean invariance of (4) gives X=ke which has no
scale dependence. '

Figure 1 illustrates the phase diagram of the KPZ

rough phase

0,

FIG. 1. Schematic phase diagram of the KPZ equation
from the one-loop RG analysis. Transitions are marked by
thick lines.

Summing over all momenta at k'= —k yields

fO

i(t L) (1 — i"" ') (6)4 2zlL ~ I&l ~zla (2tt)

where a is the smallest length scale of the problem.
From (6) one obtains (1) with the "free-field" exponents
zp=2 and (p=(2 —d)/2 (logarithmic roughness at d
=2). In a mode-coupling scenario, ' (5) is renormalized
in the presence of nonlinearity through k-dependent
coefficients D and v. The scaling property at LAO can
then be derived from (6) using D and v. This scheme is
now considered in more detail in conjunction with a
one-loop RG analysis.

Forster, Nelson, and Stephen " (FNS) developed a
dynamic RG approach to Eq. (4). As usual, the non-

linear coupling is treated perturbatively from small to
large length scales. Integrating over fluctuations on
short distances renormalizes the "bare" coefficients ve,
kq, and D~ to the eff'ective ones v, k, and D at a new

minimal length a =ba. The resulting RG flow equations
are usually presented in terms of renormalized and res-
caled variables

v =bz-2V y bg+z -2)„D bz-d-2'
to facilitate discussion of fixed-point behavior. They
were obtained by FNS in a one-loop approximation, '

equation in terms of the nonlinear parameter A. , whose
strength and sign can often be controlled. ' It is ob-
tained from the combined Bow equation

dg 2d —3

dl 2d
= (2 —d)g+ Kd g + O(g ), (9)

which has two fixed points at go =0 and g,
=2d(d —2)Kd '/(2d —3). For d:—2+e) 2, there is a
smooth phase associated with the stable fixed point gq.
A transition into a (presumably) rough phase occurs as g
is increased beyond the unstable fixed point g, -e. The
exponents at the transition are known to first order in e,

(, =O(e ), z, 2+O(e ). At d=2 the two fixed points
collapse and both become marginally unstable. For
d ~2 a transition occurs at A, =O (unstable fixed point

gp) between two rough phases of identical exponents.
The scaling property (1) is a direct consequence of

scale invariance of (4) under a simultaneous transforma-
tion r br, t b't, h b~h and (7) at a fixed point of
the RG flow. ' It also follows from (6) if D and v in the
expression are replaced by the eflective coefficients D(b)
and v(b), with b-k '. The latter scheme may be
justified within the one-loop perturbative ap-
proach. ' ' ' We analyzed the crossover behavior of
the RG flow defined by (8) for d ~ 2. It follows from
(8a) that, in the smooth phase, and around the transition

g, —e, ve is not renormalized (to the first order in e).
We now discuss results for the mean-square surface
width obtained from the renormalization of Dtt. Details
of the calculation will be presented elsewhere.

(a) d=2.—Integrating (9) and (8c) at (p=0, zp=2
gives

D, (ing, )

in(g, /b)
'

where g, exp(8tr/ga) is the crossover length in units of
a, and ge =(a/tt) Dtt), tt/vtt Following th. e procedure
outlined above, we obtain, for an infinite system,

Dtt in(, in),
w t= ln

nve in(, /g(t)
'

which is valid when the growing length scale g(t)
=gpt " is small compared to g, . The logarithmic
roughness at A. =0 is recovered in the limit g, ~. The
singularity of (11) at g(t) =g„ is due to lack of a
strong-coupling fixed point of (9) at a finite g. It can be
removed by connecting (11) to the asymptotic form (1),
taking g, to be the unit of length and 1n(, the renormal-
ized amplitude,

P' r

w (t) = G +lnin(, , (12)
De ln(, gpt

n' ve

where G(x) = —ln( —lnx) at x « 1 and -x " at
x»1. We expect (12) to cover the whole crossover re-
gime of the KPZ equation, though the explicit form of G
is known (from the one-loop calculation) only when its
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argument is sufficiently small. The steady-state surface
width of a finite system satisfies a scaling similar to (12),
with the argument of G replaced by L/&, . Choosing gtI
as the scaling field, the one-loop calculation yields a
crossover exponent &=0. The crossover from the loga-
rithmic to a power-law scaling is thus exponentially
slow; e.g. , reducing gtt from 10 to 1 brings (, from about
10 to about 10", a change of ten decades in the cross-
over length.

(b) d & 2.—In this case

(I+g,')/[I+(g, /b)'), gs & g„
D(b)

(g,'- I)/[(g, /b)'- I], g, & g, .

(13a)
(13b)

(13c)

Here (,=~1 —g, /gtI~
't'. Like (10), (13c) is valid only

when b is sufficiently smaller than (,.
At the transition gq g„ the power-law behavior of

D(b) yields a dimension inde-pendent scaling form
w (t,L)-ln[LF(t/L )], conjectured previously on the
basis of a numerical study. " From (6) one obtains lnF
explicitly in terms of an exponential integral. In our cal-
culation the logarithmic scaling at the transition is only
an order-e result, but its validity resides merely in z, =2
being exact. Sufficiently close to the transition, fluc-
tuations on length scales much less than g, are still loga-
rithmic, but now the crossover is more rapid than in the
d-2 case. For L»g, and t »g,", our calculation shows
that w (t,L) saturates to a finite value wR

=Dt's(rrvtt) 'In(, on the smooth side of the transition.
On the rough side w (t,L) should presumably cross over
to a power law (1) as observed in numerical studies. "
Explicit crossover scaling functions can be readily de-
rived as in the previous case. Identifying gal

—g, with
the scaling field in (2), the crossover exponent is found to
be p=a.

In the following we compare the predicted scaling (12)
with numerical-simulation data on the hypercube-
stacking model" at d=2. This is a solid-on-solid model
for the (111) surface of a simple-cubic structure.
Growth is controlled by deposition and evaporation of
particles at eligible sites with rates p and p, respec-
tively. Sublattice updating scheme and periodic bound-

ary conditions are adopted for simulations in a strip
geometry. Time is measured in units of sweeps of the
whole surface. As reported previously, ' ' at a fixed
p+ = 2, the model exhibits a logarithmic scaling at

p =
2 and a power-law one at p =0. Crossover is

expected to occur at intermediate values of p, with a
crossover length (, which diverges as p p+.

We studied a system of N=L =5760 surface sites at
p+ =

2 with a varying p . Saturation of the surface
width at this size is estimated to take place at t S
x10 . Because of the difficulty in exploring the whole
crossover regime from a single run at a p very close to
p+, we have instead performed a number of simulations
up to t =4096 at different values of p . Each set of
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FIG. 2. Scaled surface width data vs time showing data col-
lapse at p = —,

'
and various values of p (given in the inset).

The solid line shows the predicted behavior from the one-loop
RG analysis. The dashed line gives the asymptotic power law
at P =0.24. Inset: Unscaled data on the same scale.

data should then fit part of the scaling curve (12) with
its own crossover length g„(p ) and prefactor of the
scaling function A(p ). To facilitate the comparison
we plotted w (2t) —w (t) vs t on a log-log scale, as
sho~n in Fig. 2. In this way the time-independent term
in (12) (as well as possible intrinsic width of the surface)
drops out. In addition, a logarithmic w (t) is represent-
ed by a constant on the plot, while a power-law behavior
has the usual appearance of a straight line at a finite
slope. A data collapse for —,', ~ p & —,', is achieved
through a horizontal and vertical translation of each
data set at t ~ 4 (shown in the inset) by an amount
21ogiog (p ) and logioA(p ), respectively. This fitting
procedure becomes ambiguous when the curvature of a
data set becomes too small, which is the case at larger
values of p . The solid line represents the one-loop re-
sult for G(J2u ) —G(tu )= —ln(1+ln2/lnu) at small
u =g (t)/g, -t/g, (also shifted). The dashed line indi-
cates an asymptotic power-law dependence with
P=0.24. 11 We conclude from Fig. 2 that the seemingly
decreasing efl'ective exponent p, lr with increasing p (at
least up to p = —,', ) can be interpreted as due to a
crossover effect. Furthermore, the data-collapse curve
gives a numerically determined form for the scaling
function G which matches well with the solid line at
small values of the scaling variable. We interpret devia-
tions of the early-time data at p = —,', from the analytic
curve as due to transient effects not described by the con-
tinuum equation. Such effects may arise due to, e.g. ,
discrete-time dynamics adopted here and the underlying
lattice structure.

A further check on the scaling form (12) can be made
by analyzing the dependence of A on g, . In Fig. 3 we
plotted (, and A obtained above on a semilogarithmic
scale. The rapid increase of g, with decreasing
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FIG. 3. Crossover length g„vs scaling amplitude A. Rela-
tive error bars on (, (not shown) are comparable to those on A.

10

tc=(p —p )/p+ is evident: A 30% decrease in tc in-

creases g, by more than 30 times. The straight line in

the figure gives the dependence of A on g, assuming

Dts/vts to be a constant. Our data thus show that Dtt/vts

depends only weakly on p . ' It would be interesting to
study this dependence in more detail and to verify the

predicted exponential law (, -exp(8tr/gtt) by measuring

the bare parameters.
In summary, we have demonstrated the importance of

multicritical scaling in analyzing kinetic phase transi-
tions. We discussed in detail the crossover from loga-

rithmic to power-law scaling which occurs in the weak-

coupling regime of the KPZ equation at d=2 and above

the roughening transition at d & 2. Explicit scaling
forms in various limits were obtained through a one-loop

RG analysis. By employing extended scaling forms we

established that the observed varying effective exponent
in a large-scale simulation of a deposition and evapora-
tion model is due to an exponentially slow crossover of
the KPZ equation at d=2. Our results may shed some

light onto the recent controversy over the nature of ki-

netic phase transitions(s) in various (2+ I)-dimensional

growth models. Given the ineffectiveness of the non-

linear term in driving the system into the strong-coupling
regime at d 2, it would be interesting to explore the
eA'ect of adding other terms to the continuum KPZ equa-

tion, which may modify the crossover behavior or even

the phase diagram discussed here.
Very recently, Guo, Grossmann, and Grant proposed

a crossover scaling form connecting logarithmic to
power-law roughness in (2+ I) dimensions, parametrized

by a crossover exponent p'=z, /p. From the simulation

they obtained P'=4. 5. Our scaling form (12) corre-
sponds to a suitable ts' ~ limit of their form. We note

that any finite value of p' is inconsistent with the pertur-
bative RG scheme of FNS.
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