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Universality and Interfaces at Critical End Points
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At a critical end point a critical phase coexists with a noncritical phase a and singularities arise
beyond those on the associated critical line. New universal amplitude ratios are defined for the shape of
the a phase boundary and for the noncritical surface tensions near end points. A postulated correspon-
dence with wall/surface criticality leads to predictions for general dimension d that are exact at (and
near) d 2 and for d ~ 4 (where mean-field theory applies) and yield experimentally testable estimates
for d =3.

PACS numbers: 64.60.Fr, 05.70.Jk, 68.35.Rh, 82.65.Dp

Consider a normal critical point of binary fluid demix-
tion or gas-liquid condensation (order-parameter sym-
metry, n =1), of a superfluid (n -2), or of an isotropic
ferromagnet (n =3), with a critical temperature T, (g),
where g represents a nonordering fteld such as the pres-
sure, or the chemical potential of an extra species,
etc. If, say, the specific heat exhibits a singularity
A ~(g)(lt~ ' as t= tT —T—,(g))/T, (g) 0+', then the
ratio A+(g)/A —(g) is, very generally, a universal num-

ber, independent of g, for example, A~/A —=0.523 for
n =1 in d-3 dimensions. ' Such amplitude ratios are of
interest since, like the critical exponents, a, P, v, etc. ,

they characterize the universality classes of critical be-
havior.

Now if the field g is changed sufficiently, one often en-
counters a critical end point, (T„g,), at which the criti-
cal line T, (g) meets and is truncated by a first-order
phase boundary beyond which the system realizes a new,
disordered, noncritical phase, say, a, typically a vapor;
see Fig. 1(a). It is commonly accepted that the critical
exponents and amplitude ratios defined on the critical
line are no different than at the end point (although this
has rarely been carefully checked experimentally or
theoretically ). To our knowledge, however, it has not

previously been noted that critical end points exhibit
universal singular behavior beyond that observable at or-
dinary critical points. The purpose of this Letter is to
elucidate some of these new features and to provide
quantitative estimates of the associated amplitude ratios
that may be tested experimentally or in simulations.

Two fundamentally distinct cases arise: symmetric S
and nonsymmetric N. Case N represents, e g , flu. id.

mixtures in which, below T, =T, (g, ), a vapor phase a
may coexist, on what is then a triple line g, (T) with two
distinct liquid phases, say, P and y, unrelated by any
symmetry operation; see Fig. 1(b). Above T, (g) the
liquid phases merge into a single disordered phase, say,
Py. In case S, exemplified by a binary alloy (n =1), a
superfluid (n =2), or a ferromagnet (n =3), the ordered
phase below T„say, P, realizes a broken symmetry ab-
sent in the new spectator phase, a. In other words, the
ordering field h, which selects the "sense" of P —below
T„does not couple linearly to the free energy of the
phase a.

Perhaps the simplest novel aspect of a critical end
point is that the phase boundary g (T) itself should be
singular at T, . Indeed, naive thermodynamic argu-
ments yield

g~(T) —go(T)= —X~~t~ ' as T T, ~,

ge

ered)

itical)

g=g (T)
T(T~

Nonsym.

(b)

with go(T) =g, +g ~ t + analytic, X~ )0, and,
furthermore, a universal ratio X+/X- =A~/3-. This
conclusion has been checked theoretically in explicit cal-
culations for the n or spherical-model limit for sys-
tems of general dimensionality d. Both short-range in-

teractions and long-range power-law couplings are en-
compassed. Experimental tests should be feasible; note
that when g is the pressure p and a & 0, one finds the
divergence

d'p. & Ieol' '(
(dT (t'e t'r ) Te

FIG. l. (a) A critical line T, (g), an end point (T„g,), and a
first-order transition boundary g (T), where g is a nonordering
field, like the pressure. (b) Coexisting fluid phases below a non-
symmetric critical end point.

where 2+ is the amplitude of the constant-pressure mo-
lar heat capacity on the critical locus near the end point,
while en= 1

—(dT, /dp), (dp /dT) and c and ti, are the
end-point molar volumes of the spectator and critical

2402 0& 1990 The American Physical Society



VOLUME 65, NUMBER 19 PHYSICAL REVIEW LETTERS 5 NOVEMBER 1990

k
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when z 0, with c(T) & 0 analytic,

X(j,k) =d(k+ j+ —,
' —r)+ 2

(4)

(5)

and a correction factor 1+c(z+czz +
Near an end point, however, the droplets become criti

cal and the arguments must be reconsidered. Finite-size
scaling shows that (3) must be modified by adding a

singular part '

hFI/ke T = U(tl ' ') + rl* lnl,

where v is the standard correlation length exponent
while, in general, ri*e0. (Increments hf and i)f are
also entailed. ) The scaling function U(x) is analytic
but varies as U —x "+U(—x ' ' —dvri*ln~x~ when

x +'~, where hyperscaling, with dv=2 —a, is im-

plied. " The previous reasoning then recaptures the
result (1) for the phase boundary. Furthermore, the
form (4) is also not changed. However, just at the end

point T, the exponent A. becomes X, =X —dri and new

terms O(U'(0)z ' ' i") appear in the correction factor.
Beyond bulk properties, of particular interest at a crit-

ical end point are the noncritical interfaces and their ten-
sions:' ' Z, ~p (T) for case S and Z, ~p and Z, ~)), for
case N [see Fig. 1(b)]. Note that the usual critical in-

terfacial tension below T, vanishes as'

Zp), (T) =Karl" (n=1), (7)

where p =2 —a —v is the surface-tension exponent obey-
ing p=(d —1)v for d(4 and p= —,

' for d&4. For
n ~ 2 one may define the amplitude K analogously by re-

placing Z))~„by keT(Y/keT)v with y=(d —1)/(d —2)
(for d(4), where Y(T) is the appropriate helicity
modulus. '

Now if Zo(T) & 0 is a suitable analytic background
term, scaling dictates

~Z.~,.(T)-=Z.~,.—Z, =K~~r(~ (S)

and similarly for Z, ~p and Z, ~p„(N). The amplitude ra

phases, respectively.
The droplet picture of condensation implies an

essential singularity in all derivatives of the thermo-
dynamic potential, rr(T, g), when the phase boundary is

approached in the a phase, i.e., as z=g g(—T) 0 —.
More concretely, suppose a is a vapor, g is the chemical
potential, and the free energy of a droplet of l»1 parti-
cles varies analytically as '

F((T)/kgT = If (T)+l f (T)+rlnl+, (3)

with (r=1 —1/d, describing bulk, surface, and closure
contributions. Then the essential singularity is charac-
terized by a cut along the positive real axis of the com-

plex z plane with a discontinuity that vanishes as

tios,

P =(K++K —)/K and Q =K+/K

then serve to characterize critical end-point behavior.
Although apparently not remarked previously, both these
ratios should be universal (at least for d & 4) and acces-
sible to experimental study. [Note that K~/K=P/(1
+Q T-() ]

Widom and co-workers' have studied the end-point
tensions within classical, square-gradient, Landau-van
der Waals theory (carried to m in the order parameter
m). Implicit in their analysis are the results

P= —
—,
' (J2 —1)=—0.207, Q= —J2 (N), (10)

and

P=-,', Q-0 (S), (ii)
which, with p= 2, should be valid for d &4. Fur-
thermore, the universality of these values has been
checked' '5 within mean-field theory including orders
m, m, . . . . The leading correction term to (8) varies
as r for Z, ~)) but as t Int for Z, ~))„.

' ' The negative
signs in (10) are, perhaps, surprising; they imply a cusp
in the interfacial energy and seem to disagree with avail-
able experiments on fluids.

To go further and obtain results for d & 4 we first ex-
plore the rather natural hypothesis, 0, that the spectator
phase a can be replaced by a rigid wall co. ' This is

reasonable as t 0 since the fluctuations in a are non-

critical; evidently, however, 0 cannot reproduce (1) nor
does it allow for displacements of the free a~P interface.
Nevertheless, within mean-field theory for walls (the
wall being endowed with a surface field, ' h(, etc. ) one
discovers' that P and Q do retain the same universal
values as at an end point. More explicitly, the singulari-
ties of Z, ~p, etc. , match those of the wall free energies,
Z ~p, etc. , of a semi-infinite bulk phase near its ordinary
bulk critical point. ' The cases S and N correspond to
h( 0 and, say, 0 & h( ~ ~ and can be identified with

the ordinary and extraordinary surface transitions, re-
spectively. ' ' The same scaling forms are then repro-
duced although the t lnt end-point correction is not
found.

Accepting 0 and utilizing renormalization-group
field-theoretic calculations for the wall problem' when

e =4 —d 0+ yields the novel prediction

Q(d) = —,
'

n J2ne/(n+8)+O(e ) (S, h( =0). (12)

Regrettably, no further applicable e-expansion results
seem currently available.

In d =2 dimensions one has p =1 for n =1 and Zp~,
vanishes simply as K~r ~; however, the wa/l free energies
of d =2 Ising models vary logarithmically as'

Z„~~(T) =Z, +K«in(r [
-'+K )r (+

so that Q is no longer well defined. Nevertheless, one
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may look for universality over various Ising lattices. For
square lattices (with both axial and diagonal walls) and
for triangular and honeycomb lattices' we find

1.1 1.2 ~ 1,3 1.4 1.5
l I

1.264

P = —,', P(=K(/—K =I/4n (d =2; N, lzi = ) ~ (14)
K+
Kand

P= 4, Pi= I/47r (d=2;S, Iti =0) 1

2(is) 1
2

—results previously unnoticed. We speculate, on the
basis of 0, that these values will characterize both real
and model Ising-like end points in d =2 dimensions.

The unexpected logarithmic behavior (13) can be un-

derstood as follows. Suppose G(T;d) is some property
displaying a critical singularity with exponent g(d) and
an analytic background piece [like Z, i&(T) but unlike

Z&i„(T) which vanishes identically for T) T, ]. Then,
when g=—m+6((d) is close to an integer m, experience
teaches that the singular part should vary as20

—Gtt

(gati

~ —I)/Ag, representing a "resonance" be-
tween singularity and background. When 6( 0 this
yields hG = Gt t ln i t i

'. On these grounds (see also
below), we conclude that as d varies one has

1
2

1
2

Non sym.

3
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I I l
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FIG. 2. Variation of the universal amplitude ratio Q(d)
with p and d. The solid curves are approximations accurate
near d=2 and 4, while the dashed lines represent exact asymp-
totic behavior. For d=3, see also Eq. (18).K+ (d)/K(d) = ~ P(/&p+ ~ (P ~po)+p i ~p (16)

fashion, a nonclassical functional equation advanced by
Fisher and de Gennes that made various surprising23

predictions, since verified, that go beyond simple scal-
ing. The details will be described elsewhere here we
summarize briefly the main conclusions: (i) The hy-
pothesis 0, the wall/end-point equivalence, is justified
for general, nonclassical equations of state and correla-
tion functions; (ii) the crucial role of the required
analyticity properties of the scaling functions for the
equation of state, etc. , is demonstrated; (iii) the loga-
rithmic form (13) and its analog for p any integer is de-
rived generally; (iv) likewise the amplitude variation
(16) is established; and (v) by utilizing parametric rep-
resentations of the equation of state, including new "tri-
gonometric" and "interpolated linear models, "' explicit
numerical estimates for P(d) and Q(d) are computable
that are consistent with the exact t. expansion and d =2
data and with the best-series estimates for d=3. ' Ex-
plicitly, a first calculation' yields the improved esti-
mates

Q=0.49, P=0.38 (d=3; S, n =1) .

Then simple proportionality, using (12), suggests
Q(d=3)=0.9 for n =2; this value should describe the
surface tension of superfluid He above and below the k
point. The experiments of Magerlein and Sanders
seem consistent with this approximation but further ob-
servations and analysis would be worthwhile.

For the fluid case (N, n =1) one finds ' Q(d=3)
= —0.98 and P(d=3) =0.01. The negative sign of Q,
as found for d ~ 4, seems trustworthy; further experi-
mental tests are surely called for. However, especially in
the absence of the analog of (12), the magnitude must
be regarded as dubious. One route towards an improved
estimate would be to derive O(e ) expansions for P and
Q. These would allow the introduction of a (hp) term
in (16) (and yield a nontrivial variation for P). Howev-
er, the necessary calculations are technically difficult.

15We have, instead, undertaken a study which utilizes
a novel nonclassical but local functional equation for the
order-parameter profile. This generalizes, in a nontrivial

Q = —0.82, P=0.1 (d=3; N, n=1), (18)

which we believe will prove fairly accurate.
Finally, we point out the general interest of the hy-

pothesis 0 and the value of checking it further. Clearly,
it does not allow for the capillary-wave fluctuations of
the aiP interface which are always present for d ( 3. In
d =3 it is possible that t1 applies when aiP is smooth at
the end point but not when it is rough. Can the special
wall transition' be identified as some class of end-point
behavior'?
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when pp=p(d) —
1 0, PI and P being given by (14) or

(IS).
Now p(d) is known to O(e ) and varies almost linear-

ly for 2 (d ~ 4 with' p(3) =1.264. Thus K+/K can be
estimated roughly for all d simply by matching (16) near
d=2 and d=4. ' The resulting predictions for Q(d)
are shown in Fig. 2; P(d) is predicted to vary linearly
with p. Note that Q always approaches —

1 as d 2;
but that in case S, Q changes sign via an unexpected
pole at d=2.6. In the symmetric, three-dimensional
case the approximation gives
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In summary, we have highlighted various novel univer-

sal features, especially amplitude ratios, that character-
ize symmetric and nonsymmetric critical end points.
Theories providing quantitative estimates for d =2 and

3, that are susceptible to test by experiment and simula-
tion, have been sketched.
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